当前位置:首页 > 物联网 > 《物联网技术》杂志
[导读]摘要:在井下抢险或其它搜救现场,通常都需要一种远程遥测系统来取代人工进入一些危险场所。文中提出了一种基于nRF24L01和Cortex的无线测控系统的开发方法,简要讨论了其结构和开发原理,并详细介绍了该测控系统的硬件构造和软件开发流程。

引言

在许多工业或救灾现场,通常都会存在一些人工无法直接进入或者人工进入易出现危险的场合。此时就需要一个智能系统来实现无线遥控并采集前方的物理量,将其回传至手持测控端。为此,本文给出了一种基于nRF24L01和Cortex的无线测控系统的开发方法。

1测控系统功能说明

本测控系统由手持式遥控端、测控小车端和PC上位机三部分构成,图1所示是该测控系统的整体框架图。

遥测小车恁Z手持遥控端u=>PC上位机

图1测控系统整体框架图

本测控系统的主要功能:一是用手持式遥控端操作遥测小车全方位移动;二是用遥控端控制小车来采集前方的温度、气体、氧含量、湿度和是否有人体存在等信息,并回传至手持遥控端;三是智能小车带有超声波避障传感器,可以自动避开障碍物以防损坏小车;四是用手持遥控端通过串行接口向PC机回传小车的行驶路径。

2硬件模块

本测控系统的硬件部分由手持遥控端和测控小车端两大模块构成。其中手持遥控端可以操控遥测小车移动并采集数据,也能通过串口将实时信息发送至PC端,然后通过PC端软件间接操控遥测小车。

手持遥控端由CPU、LCD显示屏、用户操控按键和无线收发模块构成。测控小车端由CPU(本系统选用Cortex-M3)、nRF24L01无线收发模块、电机驱动模块、超声波避障模块和温湿度气味传感器等组成。图2所示是系统测控小车端的原理框图。

基于nRF24L01和Cortex-M3的无线测控系统

图2测控小车端原理框图

nRF24L01无线收发模块是一款真正的单片射频无线收发模块,其工作于2.4GHz开放频段。此收发模块由集

成频率同步器、放大器、晶振、调制解调器和一个增强型ShockBurst协议引擎组成。输出功率、频率和协议配置由简单易用的SPI接口来实现控制。nRF24L01无线收发模块的功率消耗非常低,只有9mA左右,而且其内置的待机模式控制器使得超低功耗的实现更加简单。此无线收发模块可以用于无线遥控、门禁、工业数据采集、无线标签、身份识别、机器人控制等领域。

电机驱动模块中的电动机正反转控制电路原理图如图3所示。该电路由四个三极管连接成电桥,直流电动机接在桥臂上。当IN1、IN2输入为00时,Q1、Q3截止,电动机两侧电压为零,电动机停转;当输入为01时,Q3、Q2导通,电动机内部电流方向为自右至左,电动机反转;输入为10时,Q1、Q4导通,电流方向为自左至右,电动机正转。小车行走控制由两块H桥组成,当两个电动机都正转时,小车直行,一正一反时小车转弯。

基于nRF24L01和Cortex-M3的无线测控系统

图3电机驱动单元电路

超声波避障模块的避障功能实现可以有很多种选择,可以选择超声波传感器或红外避障传感器。红外传感器结构简单,造价低廉,但是测距精度比较低,而且测距精度与被测物体的颜色有直接关系,导致当障碍物颜色比较深时,避障效果较差;超声波测距精度高,只是成本较高,微控制器程序复杂。超声波传感器有四个引脚,分别是电源、地、触发输入和回响输出。首先,微控制器需要向触发引脚输出触发脉冲(宽度在10〜20us),然后超声波传感器就开始向外发射40kHz的超声波。当接收探头收到被测物反射回来的超声波后,响应引脚输出一个高电平,持续时间和超声波从发射到接收的时间间隔相等。微控制器只需要统计回响引脚的高电平时间,再乘以超声波在空气中的传播速度就能得到被测物与超声波传感器之间的距离。在车架四周安装有多个超声波探头,微控制器可以周期性地查询距离四周障碍物的距离,然后再根据距离信息调整小车的行进方向,从而避免碰撞。

3软件功能

硬件模块只是搭建起一个基础平台,具体功能的实现还必须借助软件编程。本无线测控系统的软件模块分为硬件驱动、定时逻辑和上位机测控界面三部分。其中,硬件驱动主要包含nRF24L01的模块初始化、数据收发函数、AD转换器初始化和转换控制等。定时逻辑主要是控制CPU周期性地扫描手持端所发送的控制指令以及AD的转换结果等。

上位机测控软件的功能是接收来自手持操控端的反馈数据,根据测控小车的轮子周长计算出小车的行驶路径,并在PC机窗口绘出。图4所示是其测控系统上位机运行操控面板图。

基于nRF24L01和Cortex-M3的无线测控系统

图4测控系统上位机运行图

由图4可见,该面板分为行驶路径显示、前方数据采集结果显示和操控按键三部分。其中,行驶路径显示部分能将前方测控小车的行驶路径绘制到屏幕上,使操控者直观地看到测控小车的行驶路径信息。操控按键部分包含8个按键,分别是获取路径信息、前后左右移动、避障功能开启、采集前方物理量和停止按键。这些按键可以控制智能车的方向和采集实时物理参数。采集结果可以由测控小车通过无线模块传输至手持测控端,再由其通过串口回传至PC机。

4结语

本文所述的智能测控系统可以实现手持端远程控制被测小车的全方位移动,并采集前方温湿度和气体浓度等物理量。PC端软件也能通过串口控制手持端设备来实现相同功能,而且还能根据电机转动时间绘出小车的行驶路径。通过对本系统的实际调试,上述功能的实现完全正常。

20210916_614355533a118__基于nRF24L01和Cortex

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭