当前位置:首页 > 嵌入式 > 嵌入式微处理器
[导读]大家好,今天和大家分享一下STM32F103C8T6读写内部flash,关于103系列的单片机大家可以参考选项手册查看flash的容量。一、芯片FLASH容量分类:可以看到我们今天介绍的这款芯片的flash大小是64K的,网上也有人说它可以支持到128K,但是官方给出的解释是前6...



大家好,今天和大家分享一下STM32F103C8T6读写内部flash,关于103系列的单片机大家可以参考选项手册查看flash的容量。
一、芯片FLASH容量分类:

可以看到我们今天介绍的这款芯片的flash大小是64K的,网上也有人说它可以支持到128K,但是官方给出的解释是前64K是有保证的,后面的无法保证,所以想要使用的小伙伴需要慎重。
现在芯片的flash大小我们知道了,下面就可以看看这个flash是怎么划分的了,通过芯片数据手册,我们能看到今天说的STM32F103C8T6是属于中等容量的设备。

既然是中等容量的设备了,那我们就来看看flash划分吧,在STM32的闪存编程手册中有这样一段话:按照不同容量,存储器组织成:
32个1K字节/页(小容量)128个1K字节/页(中容量)256个2K字节/页(大容量)
这段话怎么理解呢,就是告诉我们小容量的设备(内存是6K和32K)的设备是由1K字节每页组成的。
中容量的设备(内存是64K和128K)的设备是由1K字节每页组成的。大容量的设备(内存是256K、384K和512K)的设备是由2K字节每页组成的。
举个例子吧:
一个芯片的存储容量是64K,这64K是什么呢,就是64*1024个BYTE,一个BYTE是由8位0或1组成的,(比如0000 1111 这8个二进制数组成了一个字节,用十进制来说就是15)
小结一下:64K的flash可以存储64*1024个字节的数据。
咱们继续说,这64K的数据怎么划分,存储是按照页为单位进行存储的,一页1K的容量,也就说一页可以存储1024个字节。
一共是多少页?
答案是:64页,我们看一下官方是不是这么说的

在闪存编程手册里确实是这么说的,所以我们刚才说是64页是正确的
二、 读写步骤:
上面我们知道了芯片是怎么分类的,下面我们就重点来讲解一下芯片是怎么读写的。
内部flash我们参照HAL库或者标准库,直接调用ST公司给我们封装好的库进行编程就可以了,这里我用的是标准库,有兴趣的小伙伴可以去看看HAL库。
是不是有小伙伴会疑问什么是标准库,什么是HAL库?
在这里给大家解释一下,这两个库都是ST公司,直接把寄存器封装成函数,供大家直接调用某一个函数,就可以完成各种寄存器的配置,不容大家直面芯片的寄存器,方便阅读和使用,因为每个函数的名称功能都是不一样的,在调用前可以参考函数的注释,在F0和F4的标准库里甚至有每个函数的用法,不知道为什么在F1的库里把使用步骤去掉了。
咱们继续,读写的话库函数分为:
/*------------ Functions used for all STM32F10x devices -----*/void FLASH_SetLatency(uint32_t FLASH_Latency);void FLASH_HalfCycleAccessCmd(uint32_t FLASH_HalfCycleAccess);void FLASH_PrefetchBufferCmd(uint32_t FLASH_PrefetchBuffer);void FLASH_Unlock(void);void FLASH_Lock(void);FLASH_Status FLASH_ErasePage(uint32_t Page_Address);FLASH_Status FLASH_EraseAllPages(void);FLASH_Status FLASH_EraseOptionBytes(void);FLASH_Status FLASH_ProgramWord(uint32_t Address, uint32_t Data);FLASH_Status FLASH_ProgramHalfWord(uint32_t Address, uint16_t Data);FLASH_Status FLASH_ProgramOptionByteData(uint32_t Address, uint8_t Data);FLASH_Status FLASH_EnableWriteProtection(uint32_t FLASH_Pages);FLASH_Status FLASH_ReadOutProtection(FunctionalState NewState);FLASH_Status FLASH_UserOptionByteConfig(uint16_t OB_IWDG, uint16_t OB_STOP, uint16_t OB_STDBY);uint32_t FLASH_GetUserOptionByte(void);uint32_t FLASH_GetWriteProtectionOptionByte(void);
FlagStatus FLASH_GetReadOutProtectionStatus(void);FlagStatus FLASH_GetPrefetchBufferStatus(void);void FLASH_ITConfig(uint32_t FLASH_IT, FunctionalState NewState);FlagStatus FLASH_GetFlagStatus(uint32_t FLASH_FLAG);void FLASH_ClearFlag(uint32_t FLASH_FLAG);FLASH_Status FLASH_GetStatus(void);FLASH_Status FLASH_WaitForLastOperation(uint32_t Timeout);/*------------ New function used for all STM32F10x devices -----*/void FLASH_UnlockBank1(void);void FLASH_LockBank1(void);FLASH_Status FLASH_EraseAllBank1Pages(void);FLASH_Status FLASH_GetBank1Status(void);FLASH_Status FLASH_WaitForLastBank1Operation(uint32_t Timeout);
在这里就不一个一个的详细说了,我们说一下常用的就行
1. 解锁void FLASH_Unlock(void);
2. 上锁void FLASH_Lock(void);
3. 页擦除FLASH_Status FLASH_ErasePage(uint32_t Page_Address);
4. 半字写入FLASH_Status FLASH_ProgramHalfWord(uint32_t Address, uint16_t Data);
上面这4个函数就是我们最常用的。
下面说一下数据写入的步骤:

第一步:解锁。
第二步:判断写入的数据是否被擦除过,也就是判断写入的地址内存放的是不是0xFFFF 这里要重点说一下,为什么要判断是不是0xFFFF而不是判断是不是0xFF呢?因为我们每次写入数据都要写入半字,也就是两个字节的数据才行,而且写入的地址只能是2的整数倍,不能是奇数。这里大家注意一下。
第三步:写入数据 STM32F103C8T6只能按照半字的方式进行数据写入,写入前的数据必须是0XFFFF,因为FLASH数据写入,只能写0,不能写1,这也就是为什么我们要先确保写入前的数据是被擦除了的原因。
第四步:上锁。
第五步:验证写入是否正确。
其实第五步可以省略。
我们看看官方给的写入过程:

好了,其实是一样的。下面我就和大家来分享一下(百分之九十九参考的正点原子的例程)。
//不检查的写入//WriteAddr:起始地址//pBuffer:数据指针//NumToWrite:半字(16位)数 void STMFLASH_Write_NoCheck(u32 WriteAddr,u16 *pBuffer,u16 NumToWrite) { u16 i; for(i=0;i { FLASH_ProgramHalfWord(WriteAddr,pBuffer); WriteAddr =2;//地址增加2. } }
//从指定地址开始写入指定长度的数据//WriteAddr:起始地址(此地址必须为2的倍数!!)//pBuffer:数据指针//NumToWrite:半字(16位)数(就是要写入的16位数据的个数.)u16 STMFLASH_BUF[STM_SECTOR_SIZE/2];//最多是2K字节void STMFLASH_Write(u32 WriteAddr,u16 *pBuffer,u16 NumToWrite) { u32 secpos; //扇区地址 u16 secoff; //扇区内偏移地址(16位字计算) u16 secremain; //扇区内剩余地址(16位字计算) u16 i; u32 offaddr; //去掉0X08000000后的地址 if(WriteAddr=(STM32_FLASH_BASE 1024*STM32_FLASH_SIZE)))return;//非法地址 FLASH_Unlock(); //解锁 offaddr=WriteAddr-STM32_FLASH_BASE; //实际偏移地址. secpos=offaddr/STM_SECTOR_SIZE; //扇区地址 0~127 for STM32F103RBT6 secoff=(offaddr%STM_SECTOR_SIZE)/2; //在扇区内的偏移(2个字节为基本单位.) secremain=STM_SECTOR_SIZE/2-secoff; //扇区剩余空间大小 if(NumToWrite<=secremain) { secremain=NumToWrite;//不大于该扇区范围 } while(1) { STMFLASH_Read(((secpos*STM_SECTOR_SIZE) STM32_FLASH_BASE),STMFLASH_BUF,STM_SECTOR_SIZE/2);//读出整个扇区的内容 for(i=0;i//校验数据// for(i=0;i<(STM_SECTOR_SIZE/2);i )//校验数据 { if(STMFLASH_BUF[secoff i]!=0XFFFF)break;//需要擦除 // if(STMFLASH_BUF!=0XFFFF)break;//需要擦除 } FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR); if(i//需要擦除// if(i<(STM_SECTOR_SIZE/2))//需要擦除 { FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR); FLASH_ErasePage(secpos*STM_SECTOR_SIZE STM32_FLASH_BASE);//擦除这个扇区 for(i=0;i//复制 { STMFLASH_BUF[i secoff]=pBuffer; } STMFLASH_Write_NoCheck(secpos*STM_SECTOR_SIZE STM32_FLASH_BASE,STMFLASH_BUF,STM_SECTOR_SIZE/2);//写入整个扇区 }else STMFLASH_Write_NoCheck(WriteAddr,pBuffer,secremain);//写已经擦除了的,直接写入扇区剩余区间. if(NumToWrite==secremain)break;//写入结束了 else//写入未结束 { secpos ; //扇区地址增1 secoff=0; //偏移位置为0 pBuffer =secremain; //指针偏移 WriteAddr =(secremain*2); //写地址偏移 NumToWrite-=secremain; //字节(16位)数递减 if(NumToWrite>(STM_SECTOR_SIZE/2)) { secremain=STM_SECTOR_SIZE/2;//下一个扇区还是写不完 } else { secremain=NumToWrite;//下一个扇区可以写完了 } } } FLASH_Lock();//上锁}
最终我们调用STMFLASH_Write()函数进行数据的写入,是不是有没看懂的小伙伴,我给大家解释一下写入的过程吧。
这个STMFLASH_Write()函数,是说给定一个写入的地址、数据和写入的个数,然后按照给定的地址开始写数据,注意红色字体。
写数据是怎么做的呢?
首先是整理一下写入的页地址和需要写入多少页,每一页写入的话起始地址是什么然后开始一页一页的写,当遇到跨页写入的时候,把第二页的地址写进去,写的个数继续写入就行。
还有一个地方很重要,就是我修改了库函数:
/** * [url=home.php?mod=space
嵌入式ARM

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭