当前位置:首页 > 技术学院 > 电子技术资源
[导读]交通灯控制逻辑电路设计

设计任务与要求1.设计一个十字路口的交通灯控制电路,要求甲车道和乙车道两条交叉道路上的车辆交替运行,每次通行时间都设为25秒;2.要求黄灯先亮5秒,才能变换运行车道;3.黄灯亮时,要求每秒钟闪亮一次 。实验预习要求1.复习数字系统设计基础。2.复习多路数据选择器、二进制同步计数器的工作原理。3.根据交通灯控制系统框图,画出完整的电路图。设计原理与参考电路1.分析系统的逻辑功能,画出其框图交通灯控制系统的原理框图如图12、1所示。

它主要由控制器、定时器、译码器和秒脉冲信号发生器等部分组成。秒脉冲发生器是该系统中定时器和控制器的标准时钟信号源,译码器输出两组信号灯的控制信号,经驱动电路后驱动信号灯工作,控制器是系统的主要部分,由它控制定时器和译码器的工作。图中:TL: 表示甲车道或乙车道绿灯亮的时间间隔为25秒,即车辆正常通行的时间间隔。定时时间到,TL=1,否则,TL=0。TY:表示黄灯亮的时间间隔为5秒。定时时间到,TY=1,否则,TY=0。ST:表示定时器到了规定的时间后,由控制器发出状态转换信号。由它控制定时器开始下个工作状态的定时。2.画出交通灯控制器的ASM(Algorithmic State Machine,算法状态机)(1)图甲车道绿灯亮,乙车道红灯亮。表示甲车道上的车辆允许通行,乙车道禁止通行。绿灯亮足规定的时间隔TL时,控制器发出状态信号ST,转到下一工作状态。(2)甲车道黄灯亮,乙车道红灯亮。表示甲车道上未过停车线的车辆停止通行,已过停车线的车辆继续通行,乙车道禁止通行。黄灯亮足规定时间间隔TY时,控制器发出状态转换信号ST,转到下一工作状态。(3)甲车道红灯亮,乙车道绿灯亮。表示甲车道禁止通行,乙车道上的车辆允许通行绿灯亮足规定的时间间隔TL时,控制器发出状态转换信号ST,转到下一工作状态。(4)甲车道红灯亮,乙车道黄灯亮。表示甲车道禁止通行,乙车道上位过县停车线的车辆停止通行,已过停车线的车辆停止通行,已过停车线的车辆继续通行。黄灯亮足规定的时间间隔TY时,控制器发出状态转换信号ST,系统又转换到第(1)种工作状态。交通灯以上4种工作状态的转换是由控制器器进行控制的。设控制器的四种状态编码为00、01、11、10,并分别用S0、S1、S3、S2表示,则控制器的工作状态及功能如表12、1所示,

控制器应送出甲、乙车道红、黄、绿灯的控制信号。为简便起见,把灯的代号和灯的驱动信号合二为一。3.单元电路的设计(1)定时器定时器由与系统秒脉冲(由时钟脉冲产生器提供)同步的计数器构成,要求计数器在状态信号ST作用下,首先清零,然后在时钟脉冲上升沿作用下,计数器从零开始进行增1计数,向控制器提供模5的定时信号TY和模25的定时信号TL。计数器选用集成电路74LS163进行设计较简便。74LS163是4位二进制同步计数器,它具有同步清零、同步置数的功能。74LS163的外引线排列图和时序波形图如图12、3所示,其功能表如表12、2所示。图中, 是低电平有效的同步清零输入端, 是低电平有效才同步并行置数控制端,CTp、CTT是计 图12.2 交通灯的ASM图数控制端,CO是进位输出端,D0~D3是并行数据输入端,Q0~Q 3是数据输出端。由两片74LS163级联组成的定时器电路如图12、4所示。电路的工作原理请自行分析。(2)控制器控制器是交通管理的核心,它应该能够按照交通管理规则控制信号灯工作状态的转换。从ASM图可以列出控制器的状态转换表,如表12、3所示。选用两个D触发器FF1、FFO做为时序寄存器产生 4种状态,控制器状态转换的条件为TL和TY,当控制器处于Q1n+1Q0n+1= 00状态时,如果TL= 0,则控制器保持在00状态;如果,则控制器转换到Q1n+1Q0n+1= 01状态。这两种情况与条件TY无关,所以用无关项"X"表示。其余情况依次类推,同时表中还列出了状态转换信号ST。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

半加器+半加法和全加法是算术运算电路中的基本单元,它们是完成1位二进制相加的一种组合逻辑电路。

关键字: 半加器 全加器 逻辑电路

38译码器是一种数字逻辑电路,它能够将三个二进制输入位(A0、A1和A2)编码为八位二进制输出(Y0至Y7)。

关键字: 38译码器 逻辑电路 显示控制

步进电机驱动器根据外来的控制脉冲和方向信号, 通过其内部的逻辑电路, 控制步进电机的绕组以一定的时序正向或反向通电, 使得电机正向/反向旋转, 或者锁定。

关键字: 步进电机 逻辑电路 变向励磁

我们需要了解数字控制的另一个非常重要的方面;这就是 PWM 过程。正如 ADC 是模拟世界和数字世界之间的纽带一样,PWM 模块将同样的功能带回模拟世界。考虑到它对您的控制回路性能的战略贡献,我们花一些时间讨论它是很合适...

关键字: 数字集成电路 逻辑电路

当我在 70 年代后期学习控制理论时,我们从未学习过前馈系统。一切都基于反馈和“G/(1+GH)”。如果我想从我的控制回路中得到一个僵硬的响应,我唯一知道要做的就是提高我的增益,直到我的系统刚好避免振荡!但后来我在 90...

关键字: 数字集成电路 逻辑电路

上一篇文章我们讨论了模数转换器,更具体地说,是与获取输入样本相关的时序。但是,如果你不小心的话,杂草中还有一个更大的问题正在逼近,它可能会咬你。ADC 转换完成后,结果意味着什么?基于查看这些位,您对输入信号的真正了解程...

关键字: 数字集成电路 逻辑电路

上一篇我讨论了与模拟和代码生成相关的更一般的问题。但今天我想把焦点转向模数转换器。ADC 是数字控制应用中最关键的外设之一,因为它构成了模拟世界和数字世界之间的纽带。它也是最容易被误解的外围设备之一。对于 ADC,许多工...

关键字: 数字集成电路 逻辑电路

数字集成电路设计是一个程序化的过程,包括将规格和特性转换成数字块,然后再进一步转换成逻辑电路。与数字集成电路设计相关的许多限制来自铸造工艺和技术限制。数字IC强调的是运算速度与成本比,数字IC设计的目标是在尽量低的成本下...

关键字: 数字集成电路 逻辑电路

摘要:以某电厂给水系统节能改造为案例,介绍改造前后系统流程、变频接线特点及变频给水控制逻辑特点,分析节能改造后运行出现的几个异常情况,总结改造效果。

关键字: 节能 变频 控制逻辑

摘要:为了满足电网公司深度调峰及电厂节能管理工作要求,机组在30%~50%额定负荷时,要求两台给水泵一台运行,另一台自动旋转备用。鉴于此,组织开展机组运行期间给水泵相关控制逻辑研究,并在电厂中成功应用,实现了给水泵自动旋...

关键字: 自动旋转备用 自动并泵 控制逻辑
关闭
关闭