当前位置:首页 > 嵌入式 > 嵌入式大杂烩
[导读]关注「嵌入式大杂烩」,选择「星标公众号」一起进步!来源:技术让梦想更伟大作者:李肖遥Blinky是自带的一个很简单的例子,也就是我们俗称的”HelloWorld!”,可以帮助我们了解QP。在这个blinky中,是以1HZ的速率闪烁LED灯,0.5s开灯,05s关灯。关于Blinky工程先来认识QM这个软件,我更改了模式,看起来还不错,这个模式在view里可以设置然后,新建一个QM工程工程打开之后,我们看看工程目录,工程当中有很多的快捷键,很方便,这里如果大家有兴趣可以自己熟练一下,接下来看看具体的代码以及功能。实现的功能在这个blinky应用中,只有一个名为Blinky的活动对象,这个小巧的对...


关注「嵌入式大杂烩」,选择「星标公众号」一起进步!



来源:技术让梦想更伟大


作者:李肖遥



Blinky是自带的一个很简单的例子,也就是我们俗称的”Hello World!”,可以帮助我们了解QP。在这个blinky中,是以1HZ的速率闪烁LED灯,0.5s开灯,05s关灯。


关于Blinky工程

先来认识QM这个软件,我更改了模式,看起来还不错,


这个模式在view里可以设置


然后,新建一个QM工程


工程打开之后,我们看看工程目录,


工程当中有很多的快捷键,很方便,这里如果大家有兴趣可以自己熟练一下,接下来看看具体的代码以及功能。


实现的功能

在这个blinky应用中,只有一个名为Blinky的活动对象,这个小巧的对象只应用了最基本的QP功能,先看看main函数。


int main() {
static QEvt const *blinky_queueSto[10]; /*Blinky的事件队列缓冲区
*/
QF_init();  /*初始化框架*/
BSP_init(); /*初始化BSP*/

/*实例化并启动Blinky活动对象*/
Blinky_ctor(); /*显式调用Blinky构造函数 */
QACTIVE_START(AO_Blinky,
1U,                  /*优先级 */
blinky_queueSto,     /*事件队列缓冲区*/
Q_DIM(blinky_queueSto), /*缓冲区的长度*/
(void *)0, 0U,       /*私有堆栈(未使用)*/
(QEvt *)0);          /*初始化事件(未使用)*/

/*让框架运行应用程序*/
return QF_run();
}
在这个demo中,初始化QP框架和bsp包,而且只定义一个简单的Blinky对象,为Blinky 对象写了状态机,然后开始运行这个对象。


状态机

双击Blinky :QActive, 这个Blinky AO的状态机如下图所示:


在这个状态机最顶端的initial transtion设定了一个QP event()中的QTimeEvt_armX())在每隔半秒钟投递一次超时信号。


QTimeEvt_armX函数原型如下,准备一个时间事件(一次射击或定期一次)以直接发布事件。


void QTimeEvt_armX ( QTimeEvt *const  me,
QTimeEvtCtr const  nTicks,
QTimeEvtCtr const  interval
)
//Definition at line 297 of file qf_time.c.
点击下面的off,initial transtion导致状态“off”,并在entry中执行关闭LED的操作。


void BSP_ledOff(void)
{
printf("LED OFF\n");
}
当TIMEOUT 事件抵达“off”状态的时候,“off”状态将会迁移到“on”状态。


“on”状态里的entry 动作将会关闭LED。


void BSP_ledOn(void)
{
printf("LED ON\n");
}
最后,当“on”状态接收到TIMEOUT 事件,“on”状态会跳转到“off”状态,“off”状态的entry 动作将会被执行关闭LED操作。


到此,以上的循环将会一直重复,整个状态一直在运转了。


看看状态机的代码

不知道大家看到上面解释中的代码有没有疑惑,BSP_ledOn()函数啥都没有啊,难道不应该控制某个gpio口来控制led灯的状态吗?


这里是专门被设计成了不需要直接访问目标资源,不写入特定的嵌入式主板的GPIO,而是访问调用封装好的BSP,这样就不需要改变它的状态机代码了。


对于不同的硬件平台,状态机实现代码(blinky.c)是一样的,只需要更改bsp包就行


工程中blinky.c源码如下:


我们来看看主要的代码:


void Blinky_ctor(void) {
Blinky *me = (Blinky *)AO_Blinky;
QActive_ctor(
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭