当前位置:首页 > 技术学院 > 电子技术资源
[导读]集成运放在负反馈情况下工作在线性区,可以构成比例、求和、减法、加减法运算等等多种类型的算术运算电路。下面对单运放构成的反相比例、同相比例和加减法运算电路进行分析,由此导出单运放构成的加减法运算电路输入输出关系的一般计算公式。在此基础上,利用Multisim 软件辅助设计单运放结构的加减法运算电路。

集成运算放大电路线性区运用

集成运放在负反馈情况下工作在线性区,可以构成比例、求和、减法、加减法运算等等多种类型的算术运算电路。下面对单运放构成的反相比例、同相比例和加减法运算电路进行分析,由此导出单运放构成的加减法运算电路输入输出关系的一般计算公式。在此基础上,利用Multisim 软件辅助设计单运放结构的加减法运算电路。

1.基本运算电路

1.1 反相比例运算电路

电路图如图1.1-1所示。


图1.1-1

因为此集成运放电路的对称性,据公式有

Uo = - Rf/R1 * V1 = -10V1 = -10V

与实验结果U2 = -9.987V符合良好。

1.2 同相比例运算电路

电路图如图1.2-1所示。


图1.2-1

据公式有Uo = (1 + Rf/R1 )* V1 = 11V1 = 11V

在误差范围内,上式成立。理论结果与实验结果U2 = 11.012V符合良好。

1.3 差分比例运算电路和加减运算电路

差分比例运算电路如图1.3-1所示。


图1.3-1

据公式有Uo = (1 + Rf/R1 )* V1 – Rf/R1*V2 = 11V – 20V = -9V

在误差范围内,上式成立。理论结果与实验结果U2 = -8.987V符合良好。

加减运算电路如图1.3-2所示。


图1.3-2

同理,对于图1.3-2 所示的加减法运算电路,电路的平衡条件是R1//R2//Rf = R3//R4。此时输入输出表达式根据叠加原理,可以看成是由反相端加入的两路输入V1 和V2 所产生的输出量Uo12,与同相端加入的两路输入V3 和V4 所产生的输出量Uo34 共同作用的结果。于是有:

Uo = -Rf/R1* V1 – Rf/R2*V2 + Rf/R3 * V3 + Rf/R4 * V4 = 1V

由此可得由每一路输入信号独立作用时产生的响应,在数值上等于反馈电阻与该路信号的“入端电阻”之比乘以该路信号;若输入信号从运放的反相端加入则极性为负,从同相端加入则极性为正。其实,差分运算电路其实可以算是加减运算电路的特殊情况。

1.4 积分运算电路

电路如图1.4-1所示。


图1.4-1

输入与输出波形如图1.4-2所示。


图1.4-2

对于此积分电路,由于信号源频率为100Hz,则正半个周期(输入电压可看为电压为4V的恒压源)持续时间为5ms,由公式:


得正半个周期内电压变化幅度ΔUo =-2V(反向增长),与所测结果-1.868V接近。

1.5 微分运算电路

电路如图1.5-1。


图1.5-1


图1.5-2


微分电路的应用是很广泛的,在线性系统中,除了可作微分的运算外,在数字电路中,常用来作波形变换,例如上例,输入电压为方波时,可以调节电路参数使其输出为尖顶波。

以上我们分析了比例,加减,积分,微分等运算电路。在这些电路中的反馈只是简单的R,C元件。一般来说,他们可以是R,L,C的串联或并联组合。我们可以使用拉普拉斯变换,将Z1和Zf写成相应的Z1(s),Zf(s),其中s为复频率变量。这样,输出电压为:


这是反相运算电路的一般表达式。

2.二阶低通/高通、带通/带阻有源滤波电路

滤波电路是一种允许一定频率范围内的信号通过,而对不需要传送的频率范围的信号实现有效抑制的电路。按照频率特性可以将有源滤波电路大致分为四类:低通、高通、带通和带阻滤波器,它们的共同特点是在通带其放大倍数均保持恒定不变,而在阻带放大倍数均为零。而实际滤波电路不可能达到理想滤波特性,只能尽量接近理想滤波特性以满足实际需要。常用的有源滤波电路是二阶压控型滤波电路。这里抽出二阶有源低通滤波电路来分析。

2.1基本型二阶有源低通滤波电路

电路图如图2.1-1所示。


图2.1-1

其中,双击信号源X F G1 图标,设置输入信号Ui 频率为20Hz、峰值为1.0V。示波器数据如图2.1-2所示:


图2.1-2


当我们把信号源频率调到200Hz时,有波形数据如图2.1-3所示。

设置输入信号Ui 频率为200Hz、峰值为1.0V,可以看到输入输出波形如图2.1-3所示。从输入和输出波形来看,输出信号的幅度已经明显下降,相位也明显滞后。移动光标T1和T2,Channel A 在T1 处的读数996.686mV = Uip2;Channel B 在T2 处的读数1.403V = Uop2。可得此时的放大倍数为A u = (200H z ) ≈ 1.408 ≈ 1.414,可见,200H z 约为该滤波器的上限截止频率。

图2.1-3

Bode图数据如图2.1-4所示。


图2.1-4

测得数据如下:

① f1 = 3.995Hz、UO1 = 1.999544V,由于Bode 图仪默认输入信号Ui = 1V,可得通带放大倍数Aup = 1.999544。

② f2 = 199.293Hz、U2 = 1.418673V,此时输出值下降到通带时的70.9%,可知上限截止频率 = 200.0Hz;

③ f3 = 401.847Hz、U2 = 827.649mV,此时输出值下降到通带时的41.4%。

测试结果表明,随着输入信号频率的增加,基本型二阶有源低通滤波电路的输出幅度逐渐衰减,在f H 处输出衰减了70.7%,并且阻带衰减速度不够快。

2.2压控型二阶有源低通滤波电路

电路图如图2.2-1所示。


图2.2-1

其中,双击信号源XFG1图标,设置输入信号Ui 频率为20Hz、峰值为1.0V。示波器数据如图2.2-2所示:


图2.2-2


将信号源频率改为f = 200Hz时,得到的输出波形如图2.2-3所示:


图2.2-3

Au(200Hz) ≈ 1.936

可见,在f0 附近引入正反馈以后,输出幅度基本维持不变,改善了f0 附近滤波特性。

Bode图数据如图2.1-4所示。


图2.2-4

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

集成运算放大器(Integrated Operational Amplifier)简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。自从1964年美国仙童半导体公司研制出第一个单片集成运算放大器μA702以...

关键字: 集成运算放大器 模拟 集成电路

集成运算放大器的电路构成包括输入级、中间级、输出级以及偏置电路,这四个基本组成部分共同构成了该放大器的电路结构。输入级是实现低噪声、高增益功能的主要部件之一。为了提高运算放大器的质量,必须确保其输入电阻高、零点漂移小、干...

关键字: 集成运算放大器 电路 电压跟随器

集成运算放大器(Integrated Operational Amplifier)简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。

关键字: 集成运算放大器 集成电路 耦合放大器

集成运算放大器简称集成运放,随着电子技术的发展,集成运放的各项性能指标不断提高。目前,它的应用已大大超出数学运算的范畴。

关键字: 集成运算放大器 集成运放μA741C

前面我们为大家带来了模拟电子学习中经常遇到的系列疑难问题的总结:模拟电子疑难问题解惑系列(一):半导体、放大器知多少? 模拟电子疑难问题解惑系列(二):模拟电路设计问题

关键字: 电子工程师 模拟电子 差动放大电路 集成运算放大器

集成运算放大器(Integrated Operational Amplifier)简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。

关键字: 模拟电路 集成电路 集成运算放大器

自从1964年美国仙童公司研制出第一个单片集成运算放大器μA702以来,集成运算放大器得到了广泛的应用,它已成为线性集成电路中品种和数量最多的一类。国标统一命名法规定,集成运算放大器各个品种的型号有字母和阿拉伯数字两大部...

关键字: 电路 耦合放大电路 集成运算放大器

集成运算放大器(以下简称集成运放)以小尺寸、轻重量、低功耗、高可靠性等优点广泛应用于众多军用和民用电子系统,是构成智能武器装备电子系统的关键器件之一。近年来,随着微电子技术的飞速发展,集成

关键字: 低功耗 小尺寸 集成运算放大器

1.集成运算放大电路的组成及各部分的作用集成运算放大器是一个高增益直接耦合放大电路,它的方框图如图1所示。 图1 运算放大器方框图1)输入级要使用高性能的差分放大电路,它必须对共模信号有很强的抑制力,而且常用

关键字: 模拟电路 集成运算放大器 耦合放大电路
关闭
关闭