当前位置:首页 > 厂商动态 > 派恩杰半导体
[导读]P3M173K0K3是派恩杰半导体有限公司针对高压辅助电源应用而开发,具有较高的耐压,极低的栅极电荷,较小的导通电阻Rds(on), 使其广泛适用于工业电机驱动,光伏,直流充电桩,储能变换器器以及UPS等三相功率变换系统中辅助电源设计,可以提高辅助电源系统效率、简化驱动电路设计,降低散热成本,大幅度减少辅助开关电源成本。

日前,ELEXCON深圳国际电子展暨嵌入式系统展将“低碳能效奖“颁给了国内首款1700V, 3Ω SiC MOSFET P3M173K0K3,该产品最大导通电流(Ids_max)为2A。

首款国产1700V SiC MOSFET获“低碳能效奖“,可提升电源效率4%!

P3M173K0K3是派恩杰半导体有限公司针对高压辅助电源应用而开发,具有较高的耐压,极低的栅极电荷,较小的导通电阻Rds(on), 使其广泛适用于工业电机驱动,光伏,直流充电桩,储能变换器器以及UPS等三相功率变换系统中辅助电源设计,可以提高辅助电源系统效率、简化驱动电路设计,降低散热成本,大幅度减少辅助开关电源成本。

工业三相供电(400 VAC to 690VAC)的功率变换系统,其母线电压通常高于600V,母线电压范围在300Vdc-1000Vdc。为了给系统中的控制器,显示器,风扇以及保护供电,通常需要从高压母线取电,输出小功率5-24V直流给辅助设备供电。由于母线电压通常大于600V,因此辅助电源需要采用2个800V Si MOS构成的双管反激电路,而采用1700V SiC MOS 由于可以耐更高的电压,更小的Rds(on),可以采用1个 SiC MOS构成更为简单的反激电路实现,从而大幅减小了元器件数量,设计更简单,驱动设计更容易,缩短开发周期,因此可以用于300V 至1000V输入的反激式拓扑中。SiC MOS由于具有更小的开关损耗,这可使客户可以直接将装置通过散热片安装在PCB上,无需风冷散热,这极大减少了制造成本,提高了系统的可靠性。与使用硅器件相比,更小的损耗同时意味着可以工作在更高的开关频率,从而减小电源体积和重量,有助于工业设备实现显著小型化、高可靠性和节能化。

首款国产1700V SiC MOSFET获“低碳能效奖“,可提升电源效率4%!

图1 三相功率变换系统高压辅助电源应用

应用实例

派恩杰采用1700V SiC MOS P3M173K0K3,推出65W高压辅助电源解决方案,规格如下:

• 输入电压: 宽电压范围 300Vdc -1000Vdc

• 输出电压: 24Vdc/2.7A

• 工作频率: 100KHZ

• 拓扑: 单端反激式

首款国产1700V SiC MOSFET获“低碳能效奖“,可提升电源效率4%!

图2 派恩杰65W高压辅助电源Demo

效率与成本

如图3,图4 所示,相同条件下从实测图可以很清晰的看出派恩杰PNJ方案相对普通Si MOSFET方案性能上有不少的提升,300V满载下效率提升将近4%。与国外竞争产品相比,PNJ推出1700V,3Ω的SiC MOS效率可以和ROHM 1700V,1Ω SiC MOS SCT2H12NZ达到相同水平。考虑到高压辅助电源,输入电流通常较小,导通损耗占比较小,开关损耗主导。派恩杰通过优化寄生电容,从而获得更小的开关损耗,采用较大的Rds(on)即可获得与国外竞品相同的效率。较大的Rds(on),可以采用更小的芯片面积,从而降低SiC生产成本,获得价格优势。

首款国产1700V SiC MOSFET获“低碳能效奖“,可提升电源效率4%!

图3 不同输入电压满载时的效率

首款国产1700V SiC MOSFET获“低碳能效奖“,可提升电源效率4%!

图4 300V不同负载时的效率

派恩杰推出1700V SiC MOS适合辅助电源设计,更能胜任在特别需要更高耐压以及雪崩等级的工业领域的设计要求,更快的开关速度,极小的开关损耗大幅降低了系统损耗,使得变换器高效化,同时可以通过高频化让电路中的磁性单元体积更小,重量更轻。极小的损耗加上更优异的热传导系数,让工程师在设计散热方面不再烦恼。更高的耐压简化了辅助电源结构,减少了元器件和驱动设计的复杂度,从而大幅降低了辅助开关电源系统成本。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭