当前位置:首页 > > Murata村田中国
[导读]同学们,《静噪基础课程》本期继续开讲!上一章介绍的是产生电磁噪声的机制有哪些因素会使噪声问题复杂化呢?第3 章  噪声 问题复杂 化 的因素   第1章为什么需要EMI静噪滤波器第2章产生电磁噪声的机制第3章噪声问题复杂化的因素3-1.简介3-2.谐振和阻尼3-2-1.并联谐振和...

同学们,


《静噪基础课程》本期继续开讲!


上一章介绍的是


产生电磁噪声的机制


有哪些因素会使噪声问题复杂化呢?



第 3 章
噪 声 问 题 复 杂 化 的 因 素




第1章 为什么需要EMI静噪滤波器


第2章 产生电磁噪声的机制


第3章 噪声问题复杂化的因素


3-1.简介


3-2.谐振和阻尼


  • 3-2-1. 并联谐振和串联谐振


  • 3-2-2. 关于谐振电路EMC措施的问题


  • 3-2-3. 数字电路连接至谐振电路时


  • 3-2-4. 无电感器或电容器的情况下产生谐振的示例


  • 3-2-5. 电阻器及铁氧体磁珠的阻尼作用


  • 3-2-6. 数字信号的阻尼


3-3.噪声的传导和反射


3-4.源阻抗


3-5.小结


3-2谐振和阻尼



3-2-2. 并联谐振和串联谐振


‍‍‍‍‍‍‍‍‍


(1) 谐振电路放大电压




如果电路中存在意外产生的谐振,阻抗会在谐振频率处发生显著变化,导致较大的电流或电压,这会是产生噪声干扰的一个原因。例如,从外侧向图3-2-2(a)中计算的串联谐振电路输入交流信号。



图3-2-2 谐振电路的阻抗(该图表示电抗在数轴上的大小)



如图3-2-4所示,当使用输出阻抗为50Ω的信号发生器施加电压恒定(振幅0.5V)的信号时,电容器会在50MHz谐振频率处产生比输入信号高数倍的电压。


图3-2-4 谐振电路的频率特征示例(计算值)
在这种情况下,电容器或电感器上产生的电压达到输入电压与Q的乘积。如何估算Q值将在章节3-2-5中作解释。图3-2-4的的情况表明Q = 6.3。



(2) 谐振电路可能意外产生



图3-2-4中的测试电路包括一个电容器和一个电感器,其中使用的常数为数字电路中通常会产生的值。例如,数字IC的输入端子具有不同pF的浮动静电容量。线路的电感约为1uH/米。




因此,如果将约1m的电缆连接至数字IC的输入端子(将其连接至外部传感器等),就会产生此处所示的谐振电路。




如果误将导体连接至此点,就会成为噪声发射的原因之一。



(3) 在输入电压很小的情况下内部电压升高



如图3-2-2(a)所示,串联谐振电路的阻抗在谐振频率处达到较低值。因此,您可能简单地认定电压降低。但实际上电压为什么会升高呢?



图3-2-5显示了电压的分解。谐振电路入口处(电阻器和电感器的中点)处的电压确实降低到非常小的水平。但是,由于阻抗降低,电流变大了。因此,谐振电路内产生了比所施加电压更高的电压。




图3-2-5 谐振电路不同位置的电压(计算值)



在电容器接收一定电压时,为什么谐振电路入口处的电压会消失?



此时,电感器也像电容器一样,接收了完全相同的电压。因为此电压的方向与电容器电压的方向相反,所以在谐振电路入口处几乎察觉不到任何电压。



(4) 谐振电路各点的电压完全不同



当电路发生谐振时,电路各点的电压相差很大。即使某点的电压测量值似乎表明噪声有所减弱,但整个噪声发射的测量值也可能保持不变甚至有所升高。所以需要注意这样的情况。



上面的例子是关于串联谐振电路的情形。



如果是并联谐振电路,流经电容器和电感器的电流会比输入信号的电流更高。因为这种电流也是产生噪声的原因之一,所以在并联谐振电路的情况下也需要注意。



3-2.谐振和阻尼 - 重点内容


√ 谐振可以是串联谐振或并联谐振


串联谐振使阻抗在谐振频率处降到最低值(理论上为零)。


并联谐振使阻抗在谐振频率处升到超高值(理论上为无穷大)。


在谐振频率处,由于电压和电流极大,容易产生噪声问题


阻尼电阻器及铁氧体磁珠可用于抑制谐振。




附:第三章参考文献及下载



  1. [1] [Japanese] 電気理論(第2版),池田哲夫,森北出版 2006


  2. [2] High-Speed Digital Design: a Handbook of Black Magic,Howard Johnson, Martin Graham,Prentice Hall PTR, 1993


  3. [3] High-Speed Signal Propagation: Advanced Black Magic,Howard Johnson, Martin Graham,Pearson Education, Inc. 2003


  4. [4] [Japanese] よくわかるプリント板実装の高速・高周波対策,井上博文,日刊工業新聞社 2009


  5. 数字IC电源静噪和去耦应用手册 (点击下载PDF: 3.5MB) ,Murata Manufacturing Co., Ltd. Catalog C39C, 2010




下课!


下节课,记得相约在静噪基础小课堂哟~




关于


村田


株式会社村田制作所是一家进行基于陶瓷的无源电子元件与解决方案、通信模块和电源模块之设计、制造与销售的全球领先企业。村田致力于开发先进的电子材料以及领先的多功能和高密度模块。公司的员工和制造基地遍布世界各地。业务咨询点这里



求分享


求点赞


求在看



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭