当前位置:首页 > 物联网 > 《物联网技术》杂志
[导读]摘 要:为了实现冰芯介电特性测定仪的自动化和自适应测试功能,文中设计一个基于Agilent E4980A的冰芯介电特性测试系统。该系统结合冰芯的介电常数、坐标信息以及测量状态等,利用客户端软件数据进行分析处理,实时显示位置与冰芯介电特性的动态图形,同时该系统可设置0~200 VAC的任意测试电平与2~20 MHz的任意测试频率,通过改变测定仪的测试频率、运动模式以及探头的运行速度,达到更高的测量精度。该系统同时还可测量电阻、电容、电感和位移等参数。实验结果表明,该系统的测量位移分辨率能够达到0.08 mm,测量距离最大可达5 m,参数测试误差在1%以内。

引 言

冰芯因其分辨率高、信息量大、保真性强、时间序列长和洁净度高而成为研究全球气候变化、极地能源勘测等领域的最好媒介[1]。通过物理和化学手段可以提取其中的古气候信息及能源信息。而作为物理分析技术之一的自动化冰芯介电特性测定仪,其研究在我国却一直处于空白状态[2]。目前国内对冰芯的介电特性测试主要依靠手摇式测试平台,人为误差较大,人工成本高,且存在自动化程度低、测量模式单一、测量速度不稳定、测量精度差、测量周期长、介电特性测量的实时性差、测量数据与位置没有得到实时处理等缺点。

基于上述现状,本文设计的自动化冰芯介电特性测定仪采用机电一体化设计,实现了人性化的界面操作以及自动化的数据处理。改善了人工操作成本高、误差大的局面。提高了测量精度,缩短了测量周期,同时还增加了多种测量模式,在实现测量速度、频率、长度可调整的同时还实现了对冰芯电阻、电容、电感的同时测量以及数据处理和动态绘图显示。

1 工作原理概述

本系统工作原理如图 1 所示。PC 机和主控单元可通过运动控制单元控制机械系统以不同的运动模式完成对冰芯的多运动模式测量,并负责汇总位移采集部分采集的测量点冰芯的位置信息以及该点的冰芯介电特性信息,进而对收集的信息做算法分析处理,并绘图动态显示。同时恒温控制箱需确保整套系统可在极地正常工作。

2 硬件电路部分

硬件电路系统部分的整体结构设计如图 2 所示。系统分为主控单元,位移采集系统,运动控制系统,介电特性采集系统, 智能恒温控制系统等。

冰芯介电特性测定仪研制

2.1 主控单元

主控单元的主控芯片选用意法半导体公司(ST)生产的基于ARM Cortex-M3 的 32 位处理器芯片STM32F103VCT6, 该芯片的工作频率为 72 MHz,含有 256 kB FLASH,48 kB RAM,片上集成 A/D,D/A,USART,定时器等资源。具有功耗低、运行速度快、抗干扰能力强等优点,能满足本设计的资源要求。

主控单元集成高性能、高速的MCU ;光耦隔离输出运动控制信号,输出信号为 5 ~24 V,最大电流为 100 mA ;含专用的常闭式正负极限限位和紧急通道;支持上位机软件指令载入、485 通信、串口通信[3]。

2.2 位移采集系统

位移采集系统采用欧姆龙高精编码器,解码后发送至PC 端。必须确保编码器和运动控制系统中的减速电机保持同步, 保证维系测量精准无误。

2.3 运动控制系统

在运动控制系统中由主控单元连接PC 进行通信,PC 机中的上位机软件经由主控单元控制电机控制器,进而控制电机的运动状态。为增加操作的灵活性,运动控制系统中还设计有手动操作部分,其优先级高于 PC 机。通过手动操作按钮也能借助主控单元控制电机控制器,进而控制电机的运动状态。将步进电机和减速电机相组合,解决了测量过程中步进电机的抖动问题,提高了测量的精准性。系统中前后安装两个运动限位单元,测量端越界时会自动触发停止电平,确保滑动测量端在安全范围内工作。为应对突发紧急事件,系统增加了紧急制动按钮,可紧急关闭各系统电源。

2.4 介电特性采集系统

采 用 Agilent E4980A 进 行 介 电 特 性 采 集。Agilent E4980A 是一款用于元器件接收检验、质量控制和实验室使用的通用LCR 仪表。Agilent E4980A 可在宽频和宽幅测试信号电平范围内对LCR 元件及半导体器件进行评估和测试,也可提供在任何频率下基本精度为 0.05%(C)、 0.000 5(D)的 C-D 测量, 且在每个范围内分辨率可达 7 位数。GPIB, LAN,USB 接口是Agilent E4980A上的标准接口,支持自动测试。通过GPIB 转串口与PC 端通信。由PC 端上位机可设置LCR 测试仪的测试频率,测试模式,读出测试结果及后期的数据分析处理[4]。

2.5 智能恒温控制系统

为保证测试平台能在严寒地区正常工作,满足工作温度在- 50℃到 80℃之间的要求,特设计了智能恒温控制箱。采用DS18b20 传感器采集温度,以控制恒温箱的加热块。实际测试恒温箱可保持恒温约 15℃,满足了正常工作的要求。

3 软件设计

3.1 主控单元软件设计

主控单元作为运动状态控制的核心节点,负责运动控制系统与上位机通信。主控系统软件流程主要分为下行指令与上行数据的管理流程。其中串口发送请求标志位是在数据传输时序控制单元中设置的。数据传输时序控制单元包含在定时器中断函数中,具有计数功能,设定了产生脉冲的模式和数据上传的时序[5]。

3.2 上位机软件设计

上位机软件设计包括 LCR 测试数据、运动状态和位移数据的采集系统,测试端子A 运动控制系统和上位机界面动态显示部分。

上位机软件流程如图 3 所示。界面数据收集包括LCR 读取的冰芯介电特性,对应介电特性的位移以及运动模式状态信息。系统的数据同步由两个定时器、请求发送定时器和数据更新定时器完成。请求发送定时器负责控制LCR 测试仪查询以及切换测试模式和对位移的查询。数据更新定时器负责手动控制的查询检测、UI 界面的更新、动态图表的更新以及数据入库。

冰芯介电特性测定仪研制

上位机软件实际效果如图 4所示。数据检测区显示了实时测试冰芯的电感、电容、电阻值,还具有波形显示选择, 波形颜色选择等功能。下方是位移实时显示框,附带有位移清零功能。串口控制区分别布置了 LCR串口、位移串口以及点击控制串口的串口号和波特率的设置选项框,同时还具有LCR测试频率手动界面调整功能。右侧是电机的界面控制按钮左转、右转和停止选项。其上方的动态图表直观显示了冰芯的电感、电容、电阻和位移的关系。分别为不同测量参数提供了不同的彩色曲线图以及不同颜色的坐标表示。同时图表具有鼠标滚轮时缩放、按下鼠标中键盘移动以及按下鼠标右键出现菜单的功能。菜单附加了一键截屏、保存实时图形等功能。随着鼠标在曲线上移动,还能实时显示曲线上鼠标点的测量值与坐标的数字框,方便研究人员对测量点数据的实时直观掌握。

图 4 上位机软件实际效果图

4 测试

4.1 机械部分测试

供电后,按下总开关,系统运行指示灯亮起。按下前进, 测试端子在步进电机和减速电机的驱动下开始前进,直到前方运动限位处停下。按下后退按钮,测试端子开始向后运动, 运动过程中按下停止按钮,测试端子停止运动,继续按下后退按钮,直到测试端子运动到后方运动限位处停下。在测试过程中,测试端子的运动不会对履带内的测试线缆造成拉扯、挤压等机械损伤。测试端子可上下灵活调整,且运动在减速电机的配合下抵消了步进电机的运动抖动。

4.2软件部分测试

软件部分经过了先测试后校准再测试的流程。经前期测试发现了机械误差,由软件内部算法处理校准后再次测试, 可大大降低测试数据的误差。

测试过程 :机械部分上电后, 打开上位机界面, 设置LCR 串口为 COM10、波特率为 9 600,位移串口为 COM12、波特率为 9 600,电机串口COM1、波特率为 9 600。设置测试频率为 1 000 Hz,按下位移调零并用记号笔标记测试端子A 在机台的位置。点击界面连接各个串口,点击右转,一段时间后点击停止。测量发现测量端子实际运动距离与界面位移完全一致,且界面控制安全可靠。

校准后电阻误差率检测:设置软件环境后把测量频率改为 1 000 Hz,自选 10 ~2 800 Ω 之间的若干组电阻进行DEP

测量,得到图 5 所示的该系统的电阻误差率曲线图。其中实线为电阻误差率,虚线为拟合趋势线。从拟合趋势线可以看出, 测量阻值越大电阻误差率越小,整体误差率在 0.5%以内。

图 5 电阻误差百分比曲线图

对电容的测试 :从阻值为10 ~5 600 pF 之间的瓷片电容中选择了 20 组,在测试频率为 1 000 Hz 的条件下进行测试。误差百分比曲线如图 6 所示,实线为电容误差率,虚线为拟合趋势线。从拟合趋势线可以看出,实际电容值误差率控制在0.8%以内,且随着电容值增大有趋于平稳的趋势。

对于电感误差的测试 :试验选择 10μH~1000mH的14组常用电感进行测试,测试结果如图 7所示。其中实线为电感误差率,虚线为拟合趋势线。从拟合趋势线可以看出,在电感大于 100 μH 时实际电感值误差率控制在 0.8%以内,且随着电感值增大有趋于平稳且减小的趋势。

图 6电容误差百分比曲线图

图 7电感误差百分比曲线图

5 结 语

该冰芯介电特性测定仪较好地实现了测试数据的自动保存与算法校验分析。满足了在连续位移变化条件下对电阻、电容及电感的同时检测,还能绘制成直观动态图表。整套系统简洁明了,界面非常人性化。从系统校准,测试参数设置到数据分析处理都实现了全自动化,大大加快了科研进程,减轻了传统手动测量冰芯测试任务的压力。尤其是机械结构的设计, 安全可靠,拥有测量精度高,测量范围广,测量冰芯大小可调等优点。随着我国对极地资源的深入开发,冰芯介电特性测定仪在科考领域将具有更加广阔的应用空间。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32
关闭
关闭