[导读]CAN节点的稳定性、可靠性和安全性得益于其强大的错误管理机制。那么,CAN节点为什么能感知错误?又是如何响应错误?您是否能清晰地想象出这一过程?本文将为大家详细分析CAN节点错误管理的工作过程。 节点电路构成如图1所示,MCU作为主控制器,完成CAN控制器和功能电路的控制。 图...
CAN节点的稳定性、可靠性和安全性得益于其强大的错误管理机制。那么,CAN节点为什么能感知错误?又是如何响应错误?您是否能清晰地想象出这一过程?本文将为大家详细分析CAN节点错误管理的工作过程。
节点电路构成
如图1所示,MCU作为主控制器,完成CAN控制器和功能电路的控制。
图1 CAN节点组成框图
CAN控制器是工作于数据链路层的器件,集成了CAN规范中数据链路层的全部功能,其功能由软件和硬件共同实现,从设备供应商买回来的CAN控制器已经把相应的逻辑固化在其硅片之中;MCU是工作于应用层的器件,其功能由软件和硬件共同实现,MCU运行的程序可由设计者灵活设计,以实现CAN节点的特定功能;CAN收发器工作于物理层,其功能完全由硬件实现,其作用是将CAN控制器的逻辑电平转化为CAN总线的模拟差分信号,以及把总线模拟差分信号转换成CAN控制器的逻辑电平。
CAN节点的错误管理属于CAN通信规范数据链路层的内容,具体来说,错误管理是通过MCU和CAN控制器来实施的。可以说,CAN控制器是错误管理的基础设施,我们可以从两个方面理解其工作逻辑:一是如何感知错误,二是如何响应错误。注:
1、本文所说的CAN规范指的是德国BOSCH公司的《CAN Specification Version 2.0》。
节点如何感知错误?
如前文所述,节点对总线错误的识别是通过CAN控制器来完成的。CAN控制器输出给收发器发送引脚TX的逻辑信号位会从收发器接收引脚RX接收,这使得CAN控制器可以在发送一个逻辑位期间同时监测总线的实际电平值。CAN控制器检测总线错误原理如图2所示:
图2 监测总线错误原理图
如图2描述,CAN控制器监测一个总线电平的电平值是在采样点位置进行的,判断是否出现错误是在信息处理时间内完成的。
综上所述,CAN控制器对错误的识别可概括为:无论是作为发送器还是接收器,在采样点位置成功监测到当前总线的实际电平值后,CAN控制器便按照CAN规范中描述的错误管理规则判断是否出现错误。
CAN通信过程中的错误类型包括5种,分别是:位错误、填充错误、CRC错误、帧格式错误、应答错误。接下来分别对5种错误的检测识别过程进行解析。
1、位错误位错误是由作为发送器的节点在发送报文期间进行检测识别的。CAN控制器的程序逻辑发送的电平与监测到总线的实际信号不一致即在此位期间检测到位错误。
例外情况,在仲裁场或应答间隙期间发送一“隐性”位却监视到一“显性”位,以及当发送器发送一个被动错误标志但检测到“显性”位时,均也不被视为位错误,以实现特定的功能。
2、填充错误在CAN帧的位场中,帧起始、仲裁场、控制场、数据场以及CRC序列,均通过位填充的方法编码。无论何时,发送器只要检测到这些位场对应位流里有5个连续相同值的位,便自动在接着的下一位插入一个补码位。CAN控制器在监测总线电平值的同时对连续相同的位电平值会进行计数,如果在使用位填充法进行编码的信息中,出现了第6个连续相同的位电平值时,便检测到一个填充错误。
3、CRC错误CRC错误是由作为接收器的节点进行检测识别的。CRC序列共15位(不包含填充位),其内容由帧起始、仲裁场、控制场、数据场(如果有)的无填充位流计算而来。
CRC序列计算使用CAN规范规定的方法。作为发送器的节点发送CAN报文时CRC序列由规定的计算方法确定,作为接收器的节点从总线上接收完数据场最后一个数据位(没有数据场时是接收完控制场的最后一个位)后,如果接下来接收到实际的CRC序列与接收器的计算结果不一致,便检测到CRC错误。
4、格式错误节点无论是作为发送器的还是作为接收器均可在监测报文期间检测识别格式错误。由于CAN通信严格按照CAN规范定义的帧格式进行报文封装传输,CAN控制器在监测总线电平位时明确知道当前位、后续位属于帧格式中哪个位场,以及属于位场的第几个位,当接收到一个属于帧格式固定形式的位时,如果实际电平值与帧格式定义不一致,则检测到一个格式错误。
例外情况,对于接收器来说,帧结束最后的位被置于“不重要”状态,监测到的帧结束最后一位期间的显性位不被当作帧错误。
5、应答错误应答错误是由作为发送器的节点检测识别的。在发送报文时,只要在发送应答间隙(隐性)期间所监测到的位不为“显性”,则发送器会检测到一个应答错误。注:
1、上述5种错误不会相互排斥,也就是说CAN帧中的某个错误有可能同属一种以上的错误类型。
2、如上所述,作为发送器或接收器的不同角色时,直接能检测到的错误类型是不一样的。
节点如何响应错误?
CAN规范中规定每个CAN控制器中实现一个发送错误计数器和一个接收错误计数器。根据计数值不同,节点会处于不同的节点状态,并根据计数值的变化进行状态转换,状态转换如图3所示。
图3 节点转态转换图
当CAN控制器检测到总线错误后通过发送错误标志指示错误。对于“错误主动”的节点,错误标志表现为“主动错误标志”,对于“错误被动”的节点,错误标志表现为“被动错误标志”。
无论检测到位错误、填充错误、帧格式错误、还是应答错误,CAN控制器会在紧邻的下一位发送错误标志。如果检测到的错误类型是CRC错误,错误标志的发送开始于ACK定界符之后的位,即帧结尾。
综上所述,CAN控制器对错误的响应可概括为:根据当前的节点状态在位流序列相应的位置用错误标志标示错误,并按照CAN规范更新错误计数值,进行节点状态转换。并且是每成功监测到一次错误便进行一次响应。注:
1、由于篇幅有限,关于错误计数的详细规则、节点状态转换以及错误帧格式等细节均不在本文进行讨论,请读者查阅CAN协议规范。
2、上述分析可知道,错误响应的关键要素包括错误标志的类型和响应的位置。
错误管理机制的作用
错误管理机制的作用主要体现在对错误的响应过程。作为发送器发送错误标志时,无论“主动错误”还是“被动错误”都必然包括6个连续同极性的位,使其他节点也识别到总线错误,进而使所有节点都能丢弃当前出错的帧。
作为接收器发送错误标志时,“主动错误”标志使其他节点也识别到总线错误从而使所有节点(包括作为发送器的节点)都能丢弃当前出错的帧;“被动错误”标志不影响总线通信从而使其他节点都能成功接收当前帧,处于“被动错误”状态的节点属于“不可信”状态,其检测到错误仅是自己丢弃当前帧,这也是错误管理的灵活性所在,即错误响应并不是严格在任何情况下都使所有节点丢弃同一帧报文。
综上所述,错误管理机制可以使所有的节点同时接收或丢弃总线的同一帧报文,又可以使作为接收器的被动错误状态的节点仅自己丢弃当前报文而不影响其他节点。因此,错误管理是实现CAN通信数据一致性的机制之一。
总结
CAN节点错误管理功能是由CAN节点组成中的CAN控制器负责的,对错误管理的工作过程可以从“错误识别”和“错误响应”两个方面进行理解。错误管理是实现CAN通信数据的一致性的机制之一。
ZPS-CANFD是致远电子总线分析仪第二代CAN总线开发辅助工具,适用于CANFD、CAN、LIN总线的测量及测试仪器,支持总线数据的发送和接收,高层协议解析及诊断,能对CANFD、CAN总线物理层电气信号实时采集和记录,并附带有高速模拟通道、通用数字IO及模拟IO,通过提供的硬件接口及软件功能,用户能够便捷地构建总线信号测量与分析、节点功能仿真及测试、网络可靠性诊断及评估的自动化系统。ZPS-CANFD可实现CAN/CANFD报文和波形的同步监测,可以直观的定位排查节点错误问题,以及更高效的错误干扰等模拟测试。
ZLG致远电子官方新媒体平台










本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。
关键字:
驱动电源
在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。
关键字:
工业电机
驱动电源
LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...
关键字:
驱动电源
照明系统
散热
根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。
关键字:
LED
设计
驱动电源
电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...
关键字:
电动汽车
新能源
驱动电源
在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...
关键字:
发光二极管
驱动电源
LED
LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。
关键字:
LED
驱动电源
功率因数校正
在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...
关键字:
LED照明技术
电磁干扰
驱动电源
开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源
关键字:
LED
驱动电源
开关电源
LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。
关键字:
LED
隧道灯
驱动电源
LED驱动电源在LED照明系统中扮演着至关重要的角色。由于LED具有节能、环保、长寿命等优点,使得LED照明在各个领域得到广泛应用。然而,LED的电流、电压特性需要特定的驱动电源才能正常工作。本文将介绍常用的LED驱动电...
关键字:
LED驱动电源
led照明
LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电源转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。
关键字:
LED
驱动电源
高压工频交流
种种迹象都在表明,半导体行业或已提前进入寒冬时期,越来越多的厂商开始扛不住了……
关键字:
LED
半导体
驱动电源
崧盛股份9日发布投资者关系活动记录表,就植物照明发展趋势、行业壁垒等问题进行分享。植物照明未来市场需求广阔崧盛股份指出,植物照明将会走向长期产业领域。主要原因有三:第一,LED植物照明赋能终端种植更具有经济价值。由于LE...
关键字:
崧盛股份
驱动电源
在当今高度发展的技术中,电子产品的升级越来越快,LED灯技术也在不断发展,这使我们的城市变得丰富多彩。 LED驱动电源将电源转换为特定的电压和电流,以驱动LED发光。通常情况下:LED驱动电源的输入包括高压工频交流电(即...
关键字:
LED
驱动电源
高压直流
人类社会的进步离不开社会上各行各业的努力,各种各样的电子产品的更新换代离不开我们的设计者的努力,其实很多人并不会去了解电子产品的组成,比如LED电源。
关键字:
LED
驱动电源
低压直流
随着科学技术的发展,LED技术也在不断发展,为我们的生活带来各种便利,为我们提供各种各样生活信息,造福着我们人类。LED驱动电源实际上是一种电源,但是它是一种特定的电源,用于驱动LED发射带有电压或电流的光。 因此,LE...
关键字:
LED
驱动电源
电流
LED灯作为一种新型节能和无污染光源,由于其特有的发光照明特性,在现代照明应用中发挥着革命性的作用。作为 LED 照明产业链中最为核心的部件之一,LED 驱动电源的驱动控制技术所存在的可靠性低、成本高等典型问题一直制约着...
关键字:
多路
LED
驱动电源
随着社会的快速发展,LED技术也在飞速发展,为我们的城市的灯光焕发光彩,让我们的生活越来越有趣,那么你知道LED需要LED驱动电源吗?那么你知道什么是LED驱动电源吗?
关键字:
LED
开关电源
驱动电源
早前有新闻称,Cree在2018年开始宣布转型高科技半导体领域,并一边逐渐脱离照明与LED相关业务,一边持续投资半导体。在今日,Cree宣布与SMART Global Holdings, Inc.达成最终协议,拟将LED...
关键字:
cree
led照明