当前位置:首页 > 物联网 > 《物联网技术》杂志
[导读]摘要:ZigBee是一种基于IEEE802.15.4标准的个域网协议,是一种低成本、低功耗的近距离无线组网通信技术。文中介绍了一种基于ZigBee与51内核的高频无线传感器网络节点的硬件设计方法,并详细介绍了其各组成模块的设计原理。该设计以Chipcon公司的CC2430为基础,可应用于基于ZigBee协议的各种软硬件开发。

引言

近年来,无线传感器网络技术得到了飞速发展,由于2.4GHz通信频段免费、开放等特性,各种基于该频段的通信协议,如Wi-Fi、蓝牙等技术已相当成熟,并得到了广泛应用。ZigBee是一种基于IEEE802.15.4标准的低功耗个域网协议,该协议基于2.4GHz频段,是一种低成本、低功耗的近距离无线组网通信技术,近年来广泛应用于各种射频通信领域,如区域定位、视距数据传输、物联网标签、车用无线电子设备等。以Chipcon公司基于ZigBee协议的系列产品为代表的SOC(片上系统)也日趋成熟。因此,设计一个成本低廉、性能稳定、功能齐全的开发系统一直是相关研究的一个重要组成。本文将介绍一种基于ZigBee与51内核的射频无线传感器网络节点硬件设计。该设计围绕Chipcon公司的CC2430芯片,该芯片满足ZigBee协议的物理层要求,并集成了一个51内核的MCU,价格低廉,具备很好的开发潜力。设计采用了模块化设计方法,能够应用于各种基于ZigBee协议的软硬件开发。本文将详细介绍其各模块的设计方法与原理。

1系统总体框架

该系统总体上分为两个部分:第一部分是控制器与射频模块部分;第二部分是外围扩展电路部分。具体的系统框架图如图1所示。

 基于ZigBee与51内核的射频无线传感器网络节点硬件设计

2控制器与射频模块设计方案

主控电路是整个系统的核心,它负责整个节点的全面调度与控制。考虑到设备运行维护的便利性、系统的集成性等特点,主控电路除具备数据的处理能力外,还能够存储一定量的数据。本设计采用了基于ZigBee技术的射频芯片CC2430为核心。该器件集成了51内核的MCU控制器与RF收发器,因此控制器模块与射频模块部分采用了整体设计模式。同时,片上还具备FLASH存储器,能方便地存储数据。该器件体积小,性能稳定,运算速度快,可扩展性能好,能较好满足本设计的各种需要。

CC2430控制器电路配置

在本设计中,主控单元承担外围器件扩展与控制、A/D转换、数据传输等功能。CC2430属于高度集成的SOC系统,其I/O口设计紧凑,并具备复用功能,因此,在设计中需要尽量节约I/O口的使用,必要时可对其进行扩展。同时,设计还应具备在线下载与调试功能,以方便工程应用的需要。

I/O口配置

CC2430具有21个数字I/O口引脚,即P0、P1、P2。它们均是8位I/O口。每个口都可以单独设置为通用I/O或外部设备I/O。除了两个高输出口P1_0和P1_1之外,其余均用于输出。本设计相关I/O口通过插接件形式进行预留,以方便不同场合使用及扩展,具体如图2所示。

 基于ZigBee与51内核的射频无线传感器网络节点硬件设计

2.1.2调试接口

本设计CC2430具备在线调试与下载功能,可根据需要进行自由配置。图3所示是CC2430调试接口图,该接口通过调试接口引脚P2.2与P2.1组成,它们分别用作调试时钟与调试数据信号引脚。

 基于ZigBee与51内核的射频无线传感器网络节点硬件设计

2.2时钟与复位

CC2430的晶振采用二级设计,一级是32MHz,另一级是32.768kHz。在CC2430整机工作模式下(PM0),这两种晶振需共同工作:而在PM1和PM2电源模式下(省电模式),只有32.768kHz晶振工作;在PM3模式下,两者全关。同时,在RBIAS1和RBIAS2(22、26引脚)引脚上须外接1%精密电阻,为32MHz晶振提供精确偏置电流的具体电路如图4所示。

CC2430具备上电复位功能,也可采用手动复位。只需要

将第10弓脚RESETn强行拉至低电平,即可完成复位。

 基于ZigBee与51内核的射频无线传感器网络节点硬件设计

图4时钟电路

2.3CC2430射频模块

CC2430射频模块部分的设计如图5所示。在本设计中,CC2430除P2_3和P2_4引脚预留外接晶振外,P0_0至P2_2引脚全部引出作为接口。

RF输入输出采用高阻抗差分式,引脚分别为RF_n与RF_P。

本设计采用单极天线,为了获得最好的通信性能,应采用非平衡变压器,以达到阻抗匹配的作用。

如图5所示,分立器件L321、L331、L341以及C341构成非平衡变压器,用来连接差分输出端和单极天线。由于天线距离RF引脚有一段距离,所以需要针对天线到RF引脚的反馈传输线设计阻抗匹配。由于是单极天线,所以匹配阻抗为50。,这部分阻抗由非平衡变压器和PCB微带传输线组成,X为PCB传输线上微波波长,微带传输线实际上就是A/2阻抗匹配。

 基于ZigBee与51内核的射频无线传感器网络节点硬件设计

图5CC2430非平衡-平衡变压器

TXRX_SWITCH是一个模拟电源输出引脚,可为CC2430内部的低噪声放大器(LNA)和功率放大器(PA)提供校准电压。此引脚必须通过外接DC电路连接至RF_n和RF_p引脚。当CC2430处于接收状态时,TXRX_SWITCH内部接地,为LNA提供偏置电压,引脚上可得到低电平;当芯片处于发送状态时,TXRX_SWITCH内部接供电电压,为PA提供偏置电压,引脚上可测得高电平。另外,该电路的外接天线采用SMA接口。

3外围扩展电路

以CC2430为核心的无线传感器网络节点在实际使用中,可配备相应外围电路,主要包括外部电源电路、显示与按键电路、串口与USB通信电路等。通过这些电路,可对射频与主控模块进行相应的开发与调试。

3.1外部电源电路

本设计的电源电路主要由TPS79533低压稳压器及其外围器件组成。TPS79533输出3.3V电压,其输入电压范围是2.7~5.5V,并具有较高的电源抑制比、超低噪声、较好的电压线性和负载瞬态效应以及较小的电压漂移。其具体电路如图6所示。

 基于ZigBee与51内核的射频无线传感器网络节点硬件设计

3.2液晶显示与键盘电路

3.2.1液晶显示电路

液晶显示电路可采用128X64点阵式液晶显示器,同时,为节约主控芯片I/O口资源,采用了串/并口转换芯片74HC595d。具体电路如图7所示。

 基于ZigBee与51内核的射频无线传感器网络节点硬件设计

为了使液晶显示器具备合适的背光亮度,还可在设计中采用相应的放大管,如9015来驱动液晶显示器背光显示。

3.2.2键盘电路

本设计可通过按键电路调节各种参数,并通过液晶显示电路显示。如图8所示,键盘具备上、下、左、右、确定、退出6个按键,其中,方向按键的电路为分压电路,其分压值输入CC2430的P0.6端子。该I/O口具备A/D转换的功能,可通过软件实现键盘功能,从而节约了I/O口资源。

3.3通信电路

通信电路负责节点与PC机之间的数据收发,以实现数据下载、调试等功能。CC2430采用RS232通信模式,具体电路如图9所示。本设计采用经典设计的RS232电路,控制芯片采用了广泛使用的SP3223E,其RXD1与TXD1弓|脚可与CC2430的P0.2与P0.3引脚直接相连接。

 基于ZigBee与51内核的射频无线传感器网络节点硬件设计

需要注意的是,在实际使用中,大家经常采用笔记本电脑对节点进行在线调试和程序下载等操作,而笔记本电脑一般不具备串口,需要外接USB-RS232转换电路。笔者发现,在转换电路的选取上,市面上存在基于PL2602、SP3223E等器件的转换电路可以选择。PL2602虽然价格便宜,但并不适应CC2430的高比特率传输,而SP3223E虽然价格较贵,但对CC2430的支持较好,这也是在实际使用中需要注意的。

 基于ZigBee与51内核的射频无线传感器网络节点硬件设计

4硬件工艺特点

由于以CC2430为核心的无线传感器网络节点工作在2.4GHz的高频环境中,因此对其EMI要求较高。无线传感器网络节点的PCB也有相应的具体设计要求。

由于射频模块工作频率高,在具体的PCB设计中,根据TI公司的相关文档,可使用双层PCB。如果希望减小PCB尺寸,也可采取4层PCB设计。其具体要求如下:

若采用双层PCB设计,则顶层用于元件的放置与信号连接,通过大面积敷铜,以降低干扰。

电源滤波要求较高,退耦电容器应尽可能靠近供电引脚,并且通过单独的过孔连接到印刷电路板的接地面。

芯片的接地引脚,距离使用单独过孔的封装引脚越近越好,以减小干扰。

外接元件越小越好,必须使用表面贴装器件,具体设计可使用0603或0402封装的贴片元器件。

如果在PCB上要使用高速外接数字设备,那么必须避开RF电路。

系统应采用大规模接地方式,以消除干扰。可将PCB底层设计为接地层。

5结语

本文介绍了无线传感器网络的组成单元,基于CC2430的无线传感器网络节点及其外围扩展电路的硬件设计和实现方案,并介绍了各个硬件模块的设计方案和工作原理。其中,详细介绍了控制器与射频模块电路和外围扩展电路,包括外部电源电路、液晶显示与键盘电路、通信电路,并介绍了本设计在PCB设计时应注意的相关工艺要点。该设计在实际使用过程中性能稳定,工作良好,对同类型的,基于2.4GHz频段的高频电路设计具有一定的指导意义。

20211022_6172c83cc47b3__基于ZigBee与51内核的射频无线传感器网络节点硬件设计

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

物联网应用中常见的通信技术包括有线通信技术和无线通信技术两大类。有线通信技术包括以太网、RS-232、RS-485、M-Bus和PLC等技术。这些技术通过物理线路进行数据传输,具有稳定性强、可靠性高的优点,但是受限于媒介...

关键字: 物联网 Zigbee

ZigBee,也称紫蜂,是一种低速短距离传输的无线网上协议,底层是采用IEEE 802.15.4标准规范的媒体访问层与物理层。主要特色有低速、低耗电、低成本、支持大量网上节点、支持多种网上拓扑。

关键字: Zigbee 通信 无线网上协议

随着物联网技术的快速发展,各种无线通信技术不断涌现,其中Zigbee通信技术以其低功耗、低成本、高可靠性等优点,在智能家居、工业自动化、农业物联网等领域得到了广泛应用。本文将介绍Zigbee通信技术及其主要特征。

关键字: Zigbee 物联网

ZigBee无线通信技术是一种近距离、低复杂度、低功耗、低速率、低成本的双向无线通讯技术。这种技术主要适用于自动控制和远程控制领域,可以嵌入各种设备中,同时支持地理定位功能。

关键字: Zigbee 物联网

ZigBee是一种新型的无线通信技术,适用于传输范围短、数据传输速率低的一系列电子元器件设备之间。它建立在IEEE 802.15.4标准(定义了PHY和MAC层)之上,由IEEE.802.15.4无线标准开发而来,具有低...

关键字: Zigbee 短距离无线通信

在这篇文章中,小编将为大家带来无线通信技术的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 无线通信 Zigbee Z-Wave

今天,小编将在这篇文章中为大家带来无线通信技术的有关报道,通过阅读这篇文章,大家可以对无线通信技术具备清晰的认识,主要内容如下。

关键字: 无线通信技术 Zigbee EnOcean

无线网络通信技术是指通过无线传输介质(如电磁波、红外线等)实现数据传输和通信的技术。无线网络通信技术具有灵活性、移动性和便捷性等优点,被广泛应用于各种领域,如移动通信、无线局域网、蓝牙、ZigBee等。

关键字: 无线网络通信 Zigbee

随着物联网(IoT)的不断创新,联网设备正在处理越来越多的智能任务。对于物联网开发人员来说,部署远距离、低功耗的可靠网络来监控不断增加的物联网设备套件变得越来越重要。

关键字: 物联网 Wi-Fi Zigbee

在这篇文章中,小编将为大家带来物联网无线通信技术的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 物联网 Zigbee LPWAN
关闭
关闭