当前位置:首页 > 厂商动态 > Dialog半导体公司
[导读]很多应用在其用户控制界面中采用机械电位计。我们可以将这些机械电位计换成更新且可靠的编码器控制元件和数字变阻器,它们是改变信号电气参数的组件。

简介

很多应用在其用户控制界面中采用机械电位计。我们可以将这些机械电位计换成更新且可靠的编码器控制元件和数字变阻器,它们是改变信号电气参数的组件。

本文中,我们使用了GreenPAK™ SLG47004。它是该项目的绝佳选择,因为其电路结合了两个数字变阻器和可配置逻辑来处理编码器信息。这种组合可实现许多设计:稳压电源、具有可调增益的放大器等。此外,数字逻辑可确定编码器的旋转速度。这种方法如图1所示。

由编码器控制的电位计

图1

1. 系统概述

图2显示了基于SLG47004的内部电路设计。

由编码器控制的电位计

图2:GreenPAK Designer项目

在基于GUI的免费软件GreenPAK Designer中创建的完整设计文件可从以下链接下载。

增量编码器产生A和B输出信号,用于改变数字变阻器的电阻。变阻器形成电位计,并实现可调分压器来调节输出电压。

在任何时候,A和B信号之间的相位差为正或负,取决于编码器的运动方向。

速度由频率检测器、One-Shots和多路复用器构成。

本文中,我们使用了EC11编码器。由于开关切换抖动,编码器会产生嘈杂的输出振荡。为了消除这种噪音,我们采用了2毫秒的延迟。请注意,此延迟针对EC11编码器进行了调整(根据其数据表)。对于其他编码器,应该相应地评估延迟值。

2. 功能块架构

2.1. 数字逻辑说明

2.1.1. 确定编码器方向

首先,延迟宏单元将编码器输出信号的两个边沿延迟2毫秒。延迟宏单元起到抗尖峰脉冲滤波器的作用,可消除开关切换抖动。滤波后的信号B出现在One-Shots和频率检测器的宏单元输入端子,以及DFF的CLK输入端子上。滤波后的信号A出现在DFF的D输入端子上。当编码器码盘顺时针方向旋转时,信号A超前信号B,DFF输出为高电平;当编码器码盘逆时针方向旋转时信号B超前信号A,DFF输出低电平。所以DFF可以判断旋转的方向。变阻器上升/下降控制端子上的高或低信号决定了内部计数器对于CLK输入端子上的每个脉冲是进行增加计数还是减少计数。

编码器顺时针旋转的时序图如图3所示,编码器逆时针旋转的时序图如图4所示。

由编码器控制的电位计

图3:编码器顺时针旋转的时序图

由编码器控制的电位计

图4:编码器逆时针旋转的时序图

2.1.1.确定编码器速度

SLG47004具有10-bit数字变阻器,从而允许实施1024个调节步骤。可调分压器有3种调节模式。用户可以用step = 1个数字代码(模式1)、step = 10个数字代码(模式2)和step = 100个数字代码(模式3)共三种不同的步长来改变输出信号。采用了2个频率检测器以实现3种模式。第一种模式用来平滑准确地调整输出信号。当用户用小于10 Hz的频率调整旋钮时,会激活第一种模式。当频率在大于10 Hz小于25 Hz时激活第二种模式。频率大于25 Hz时激活第三种模式。

One-Shots为所需的脉冲数设置时间间隔。

根据频率检测器的输出,来决定数字多路复用器传递到变阻器的CLK输入端的脉冲数量是1个、10个或100个脉冲。

2.1.2. 每转的制动和脉冲数

该项目中使用了具有不同脉冲数和制动(位置)/阻尼点的编码器。对于15个脉冲,每个完整脉冲有两个制动/阻尼点。这意味着对于旋转编码器中的每个脉冲(或周期),都有两个制动/阻尼点:脉冲的上升沿(一次变化)和脉冲的下降沿(另一次变化)。如果您的旋转编码器每个脉冲有一个制动/阻尼点,那么每个脉冲有两次变化。对于这种类型的编码器,设计保持不变,除了频率检测器和One-Shots设置。他们的设置中,Edge Select应设置为“Falling”或“Rising”。在脉冲数和制动数不匹配的编码器中,Edge Select应设置为“Both”。

2.2. 电位计模式

对于此设计,我们使用了数字变阻器的电位计模式。该模式允许将两个2引脚变阻器组合配置为一个3引脚电位计一样来工作。当此模式启用时(寄存器 [917] = 1),用户只需要更改RH0内部计数器的值即可。在这种模式下,RH1计数器的值是电位计总计数值(1023)减去RH0计数器值后所得的数值。请注意RH0_B引脚和RH1_A引脚必须外部短接在一起。

2.3. 宏单元设置

下表显示了3-bit LUT1和3-bit LUT3设置:标准逻辑门–多路复用器。

由编码器控制的电位计

表1:2-bit LUT设置

由编码器控制的电位计

表2:DFF设置

由编码器控制的电位计

表3:PIN设置

由编码器控制的电位计

表4:OSC设置

由编码器控制的电位计

图5a:数字变阻器设置

由编码器控制的电位计

图5b:数字变阻器设置

由编码器控制的电位计

图6a:延迟/滤波设置

由编码器控制的电位计

图6b:延迟/滤波设置

由编码器控制的电位计

图7a:脉冲数与制动数不匹配时的One Shots设置

由编码器控制的电位计

图7b:脉冲数与制动数不匹配时的One Shots设置

由编码器控制的电位计

图8a:脉冲数与制动数匹配时的One Shots设置

由编码器控制的电位计

图8b:脉冲数与制动数匹配时的One Shots设置

由编码器控制的电位计

图9a:脉冲数和制动数不匹配时的频率检测器设置

由编码器控制的电位计

图9b:脉冲数和制动数不匹配时的频率检测器设置

由编码器控制的电位计

图10a:脉冲数和制动数匹配时的频率检测器设置

由编码器控制的电位计

图10b:脉冲数和制动数匹配时的频率检测器设置

总结

SLG47004有两个数字变阻器,可以实现众多有用的应用。一个典型的例子是结合现代编码器使用数字变阻器代替模拟电位计。本文说明了如何使用SLG47004实现可调分压器,它是一种通用解决方案,可应用于可调电源、放大器的增益控制等。该解决方案具有成本效益且能耗低。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭