当前位置:首页 > 公众号精选 > 8号线攻城狮
[导读]▼点击下方名片,关注公众号▼我们知道,三极管是利用Ib的电流去控制电流Ic的,所以说三极管是电流控制电流的器件。而MOS管是利用Ugs的电压去控制电流Id的,所以说MOS管是电压控制电流的器件。对于N沟道增强型的MOS管,当Ugs>Ugs(th)时,MOS就会开始导通,如果在D极...
























点击下方名片,关注公众号

我们知道,三极管是利用Ib的电流去控制电流Ic的,所以说三极管是电流控制电流的器件。



MOS管是利用Ugs的电压去控制电流Id的,所以说MOS管是电压控制电流的器件。
对于N沟道增强型的MOS管,当Ugs>Ugs(th)时,MOS就会开始导通,如果在D极和S极之间加上一定的电压,就会有电流Id产生。
在一定的Uds下,D极电流Id的大小是与G极电压Ugs有关的。
我们先来看一下MOS管的输出特性曲线,MOS管的输出特性可以分为三个区:截止区、恒流区、可变电阻区。
▲ MOSFET输出特性曲线


截止区:当满足Ugsgs(th),MOS管进入截止区。
截止区在输出特性最下面靠近横坐标的部分,表示MOS管不能导电,处在截止状态。截止区也叫夹断区,在该区时沟道全部夹断,电流Id为0,管子不工作。
恒流区:当满足Ugs≥Ugs(th),且Uds≥Ugs-Ugs(th),MOS管进入恒流区。
恒流区在输出特性曲线中间的位置,电流Id基本不随Uds变化,Id的大小主要决定于电压Ugs,所以叫做恒流区,也叫饱和区,当MOS用来做放大电路时就是工作在恒流区(饱和区)。
注:MOS管输出特性的恒流区(饱和区),相当于三极管的放大区。
可变电阻区:当满足Ugs>Ugs(th),且Udsgs-Ugs(th),MOS管进入可变电阻区。
可变电阻区在输出特性的最左边,Id随着Uds的增加而上升,两者基本上是线性关系,所以可以看作是一个线性电阻,当Ugs不同电阻的阻值就会不同,所以在该区MOS管相当就是一个由Ugs控制的可变电阻。
击穿区在输出特性左边区域,随着Uds增大,PN结承受太大的反向电压而被击穿,工作时应该避免让管子工作在该区域。
根据MOS管的输出特性曲线,比如下图是取Uds=10V的点,然后用作图的方法,可取得到相应的转移特性曲线


转移性是表示Uds不变时,Id与Ugs之间的关系。
在上图的转移特性曲线上,我们可以看到当Ugs大于4V时,Id大幅度增加,而当Ugs到达6V时,Id达到了最大值。。End


微信公众号后台回复关键字“加群”,添加小编微信,拉你入技术群。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在这篇文章中,小编将为大家带来MOS管的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: MOS MOS管

节省空间型器件所需PCB空间比PowerPAIR 1212封装分立器件减少50%,有助于减少元器件数量并简化设计。

关键字: MOS管

MOS管将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对MOS管的相关情况以及信息有所认识和了解,详细内容如下。

关键字: MOS管 逆变器 三极管

根据大功率开关电源对MOS管的需求,瑞森半导体推荐多款不同功率满足

关键字: MOS管 功率电源 半导体

按照我的理解,对于MOS管而言,灌电流就是漏极电流 Id,正常来说MOS管的漏极电流 Id远远超过4mA,但是为了满足逻辑要求,如上图所示,CMOS输出最大低电平必须小于输入最大低电平,即VOL(max)我去搜了一下ST...

关键字: MOS管 BUCK CMOS

PDS760-13总功耗,包括二极管的传导损耗和交流损耗。二极管在MOS管关断期间续流,瞬时传导损耗以关断期间的输出电流乘以二极管的正向电压来计算。二极管的交流损耗是由于结电容的充放电和反向恢复电荷造成的。

关键字: 二极管 MOS管 结电容

多款低压MOS产品应用在九阳小家电上,瑞森半导体坚持“首件确认,始终如一”的原则,成为众多品牌的长期合作伙伴

关键字: 功率器件 MOS管 小家电

我们知道MOS管需要开通快关断快,这样才能减少损耗,那MOS管的前级驱动电路一般情况都使用三极管推挽电路实现,我们先定前级驱动电路的电源是12V,我们来看一下电路是怎么搭建的。

关键字: MOS管 推挽电路 驱动电路

MOS管的米勒效应会在高频开关电路中,延长开关频率、增加功耗、降低系统稳定性,可谓是臭名昭著,各大厂商都在不遗余力的减少米勒电容。

关键字: MOS管 Miller 效应

摘要:电机烧毁是比较严重的设备故障,鉴于此,结合现场具体情况,避开问题误区,介绍了迅速判断故障原因的过程,并采取了正确的处理方法,在此基础上对故障原因进行了详细分析,有利于保证设备安全稳定运行。

关键字: 连接方式 特性曲线 运行电流
关闭
关闭