当前位置:首页 > 单片机 > 程序喵大人
[导读]点击上方蓝字关注下我呗之前分享过一次手写线程池-C语言版,然后有朋友问是否有C线程池实现的文章:其实关于C线程池的文章我好久以前写过,但估计很多新朋友都没有看到过,这里也重新发一下!本人在开发过程中经常会遇到需要使用线程池的需求,但查了一圈发现在C中完备的线程池第三方库还是比较少...


点击上方蓝字关注下我呗




之前分享过一次手写线程池 - C语言版,然后有朋友问是否有C 线程池实现的文章:



其实关于C 线程池的文章我好久以前写过,但估计很多新朋友都没有看到过,这里也重新发一下!

本人在开发过程中经常会遇到需要使用线程池的需求,但查了一圈发现在C 中完备的线程池第三方库还是比较少的,于是打算自己搞一个,链接地址文章最后附上,目前还只是初版,可能还有很多问题,望各位指正。


线程池都需要什么功能?


个人认为线程池需要支持以下几个基本功能:

  • 核心线程数(core_threads):线程池中拥有的最少线程个数,初始化时就会创建好的线程,常驻于线程池。

  • 最大线程个数(max_threads):线程池中拥有的最大线程个数,max_threads>=core_threads,当任务的个数太多线程池执行不过来时,内部就会创建更多的线程用于执行更多的任务,内部线程数不会超过max_threads,多创建出来的线程在一段时间内没有执行任务则会自动被回收掉,最终线程个数保持在核心线程数。

  • 超时时间(time_out):如上所述,多创建出来的线程在time_out时间内没有执行任务就会被回收。

  • 可获取当前线程池中线程的总个数。

  • 可获取当前线程池中空闲线程的个数。

  • 开启线程池功能的开关。

  • 关闭线程池功能的开关,可以选择是否立即关闭,立即关闭线程池时,当前线程池里缓存的任务不会被执行。


如何实现线程池?下面是自己实现的线程池逻辑。


线程池中主要的数据结构


1. 链表或者数组:用于存储线程池中的线程。

2. 队列:用于存储需要放入线程池中执行的任务。

3. 条件变量:当有任务需要执行时,用于通知正在等待的线程从任务队列中取出任务执行。

代码如下:


class ThreadPool { public: using PoolSeconds = std::chrono::seconds;
/** 线程池的配置 * core_threads: 核心线程个数,线程池中最少拥有的线程个数,初始化就会创建好的线程,常驻于线程池 * * max_threads: >=core_threads,当任务的个数太多线程池执行不过来时, * 内部就会创建更多的线程用于执行更多的任务,内部线程数不会超过max_threads * * max_task_size: 内部允许存储的最大任务个数,暂时没有使用 * * time_out: Cache线程的超时时间,Cache线程指的是max_threads-core_threads的线程, * 当time_out时间内没有执行任务,此线程就会被自动回收 */ struct ThreadPoolConfig { int core_threads; int max_threads; int max_task_size; PoolSeconds time_out; };
/** * 线程的状态:有等待、运行、停止 */ enum class ThreadState { kInit = 0, kWaiting = 1, kRunning = 2, kStop = 3 };
/** * 线程的种类标识:标志该线程是核心线程还是Cache线程,Cache是内部为了执行更多任务临时创建出来的 */ enum class ThreadFlag { kInit = 0, kCore = 1, kCache = 2 };
using ThreadPtr = std::shared_ptr<std::thread>; using ThreadId = std::atomic<int>; using ThreadStateAtomic = std::atomic; using ThreadFlagAtomic = std::atomic;
/** * 线程池中线程存在的基本单位,每个线程都有个自定义的ID,有线程种类标识和状态 */ struct ThreadWrapper { ThreadPtr ptr; ThreadId id; ThreadFlagAtomic flag; ThreadStateAtomic state;
ThreadWrapper() { ptr = nullptr; id = 0; state.store(ThreadState::kInit); } }; using ThreadWrapperPtr = std::shared_ptr; using ThreadPoolLock = std::unique_lock<std::mutex>;
private: ThreadPoolConfig config_;
std::list worker_threads_;
std::queue<std::function<void()>> tasks_; std::mutex task_mutex_; std::condition_variable task_cv_;
std::atomic<int> total_function_num_; std::atomic<int> waiting_thread_num_; std::atomic<int> thread_id_; // 用于为新创建的线程分配ID
std::atomic<bool> is_shutdown_now_; std::atomic<bool> is_shutdown_; std::atomic<bool> is_available_;};线程池的初始化


在构造函数中将各个成员变量都附初值,同时判断线程池的config是否合法。

ThreadPool(ThreadPoolConfig config) : config_(config) { this->total_function_num_.store(0); this->waiting_thread_num_.store(0);
this->thread_id_.store(0); this->is_shutdown_.store(false); this->is_shutdown_now_.store(false);
if (IsValidConfig(config_)) { is_available_.store(true); } else { is_available_.store(false); }}
bool IsValidConfig(ThreadPoolConfig config) { if (config.core_threads < 1 || config.max_threads < config.core_threads || config.time_out.count() < 1) { return false; } return true;}如何开启线程池功能?


创建核心线程数个线程,常驻于线程池,等待任务的执行,线程ID由GetNextThreadId()统一分配。

// 开启线程池功能bool Start() { if (!IsAvailable()) { return false; } int core_thread_num = config_.core_threads; cout << "Init thread num " << core_thread_num << endl; while (core_thread_num-- > 0) { AddThread(GetNextThreadId()); } cout << "Init thread end" << endl; return true;}如何关闭线程?


这里有两个标志位,is_shutdown_now置为true表示立即关闭线程,is_shutdown置为true则表示先执行完队列里的任务再关闭线程池。

// 关掉线程池,内部还没有执行的任务会继续执行void ShutDown() { ShutDown(false); cout << "shutdown" << endl;}
// 执行关掉线程池,内部还没有执行的任务直接取消,不会再执行void ShutDownNow() { ShutDown(true); cout << "shutdown now" << endl;}
// privatevoid ShutDown(bool is_now) { if (is_available_.load()) { if (is_now) { this->is_shutdown_now_.store(true); } else { this->is_shutdown_.store(true); } this->task_cv_.notify_all(); is_available_.store(false); }}如何为线程池添加线程?


见AddThread()函数,默认会创建Core线程,也可以选择创建Cache线程,线程内部会有一个死循环,不停的等待任务,有任务到来时就会执行,同时内部会判断是否是Cache线程,如果是Cache线程,timeout时间内没有任务执行就会自动退出循环,线程结束。


这里还会检查is_shutdown和is_shutdown_now标志,根据两个标志位是否为true来判断是否结束线程。

void AddThread(int id) { AddThread(id, ThreadFlag::kCore); }
void AddThread(int id, ThreadFlag thread_flag) { cout << "AddThread " << id << " flag " << static_cast<int>(thread_flag) << endl; ThreadWrapperPtr thread_ptr = std::make_shared(); thread_ptr->id.store(id); thread_ptr->flag.store(thread_flag); auto func = [this, thread_ptr]() { for (;;) { std::function<void()> task; { ThreadPoolLock lock(this->task_mutex_); if (thread_ptr->state.load() == ThreadState::kStop) { break; } cout << "thread id " << thread_ptr->id.load() << " running start" << endl; thread_ptr->state.store(ThreadState::kWaiting); this->waiting_thread_num_; bool is_timeout = false; if (thread_ptr->flag.load() == ThreadFlag::kCore) { this->task_cv_.wait(lock, [this, thread_ptr] { return (this->is_shutdown_ || this->is_shutdown_now_ || !this->tasks_.empty() || thread_ptr->state.load() == ThreadState::kStop); }); } else { this->task_cv_.wait_for(lock, this->config_.time_out, [this, thread_ptr] { return (this->is_shutdown_ || this->is_shutdown_now_ || !this->tasks_.empty() || thread_ptr->state.load() == ThreadState::kStop); }); is_timeout = !(this->is_shutdown_ || this->is_shutdown_now_ || !this->tasks_.empty() || thread_ptr->state.load() == ThreadState::kStop); } --this->waiting_thread_num_; cout << "thread id " << thread_ptr->id.load() << " running wait end" << endl;
if (is_timeout) { thread_ptr->state.store(ThreadState::kStop); }
if (thread_ptr->state.load() == ThreadState::kStop) { cout << "thread id " << thread_ptr->id.load() << " state stop" << endl; break; } if (this->is_shutdown_
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭