当前位置:首页 > 模拟 > 可靠性杂坛
[导读]需要可靠性评估需要基础知识:电源就像是一个源头的河水,有很多路路上有很多闸 关键元器件工作条件、典型应用、典型拓扑的工作原理及控制方式优缺点、保护电路的工作原理、RCD、RC时间常数一、元器件:瞬时极限值(测试方法、评判标准、关键参数超标原因及改善措施、失效模式、案列分享)MOS...





需要可靠性评估需要基础知识:


电源就像是一个源头的河水,有很多路路上有很多闸



关键元器件工作条件、典型应用、典型拓扑的工作原理及控制方式优缺点、保护电路的工作原理、RCD、RC时间常数




一、元器件:


瞬时极限值(测试方法、评判标准、关键参数 超标原因及改善措施、失效模式、案列分享)


MOS:(改变其栅极驱动电阻看MOS管Vds、Ids、。研究多个电路MOS管的导通过程[感性负载、阻性负载]、多种损耗分析、失效模式、MOS管一些极限参数及评判方法、热阻的概念。典型包括boost、LLC电路的驱动Vgs、当MOS管驱动电压较低是否可以考虑降低驱动电阻提高Cgd的放电速度。


MOS管开关过程


首先声明一点研究MOS管开关过程脱离相应的电路是没有实际意义的。另外MOS管开关电源里面都研究其作为开关器件使用。




MOS管的导通过程:驱动源对MOS管充电,当电压达到,MOS管开始导通,电流开始缓慢上升,当电流达到最大负载电流时,电压开始降低,漏极电压下降,那么驱动源电荷开始对(米勒电容)充电,进入米勒平台,电压不会上升,直到电压降低到不能再降低=时,米勒平台结束。MOS管基本上完全导通,此后驱动源电荷继续对充电,使之达到与驱动源电压相等的电压。













怎么来避免这种电流尖刺的产生呢?


漏极加磁阻,吸收掉阻值电流瞬时突变,使电流尖峰减小,但是同样有存在缺点MOS管关断时会产生电压尖峰。




前沿消隐:


一般开关MOS管源极都会有下地电阻检测流过MOS管的电流,但是导通瞬间电流尖刺是不希望被检测到的,同时这种电流尖刺不加抑制的话还会影响内部检测,通常下地电阻到IC检测引脚之间会连个RC,通过设置RC常数来吸收电流尖刺。这就是前沿消隐的必要性。



二极管:


1、二极管的VF


为什么二极管一定需要0.7V或者0.3V才能导通呢?


首先要理解二极管的导通过程,因为这个过程对理解二极管的电容效应更加容易。




二极管(研究二极管与线路电感量的关系、实际测量其波形、二极管的从导通到截止经历几个过程,这些过程受哪些因数影响【内部的trr和外界的】、反向恢复时间还受电流峰值影响)



三极管(三极管设置其电阻,看多大的驱动电流可以饱和导通、以及受地线的干扰试验)、


1、三种状态截止、饱和、放大的理解


2、截止失真,重点讲条件、饱和失真、串稳电路、线性稳压器。


3、三极管防干扰,注意正常控制电路和保护电路


电容(纹波电流跟温度、频率校正关系)


电容充电瞬间电流峰值大小:其两端的电压和容值关系


稳压管(稳压管的典型电路及稳压原理)


变压器、


电感:


伏秒平衡、电弧产生原理(光能、热能)


电感电流流上升斜率计算公式(有电阻、无电阻)


电感的设计、纹波电流系数、电感规格


磁珠:低频时相当于短路,高频时会阻止电流变化,高频的电流会全部流过其电阻,具有很好的高频滤波特性。


芯片的前沿消隐时间


三端稳压管431与光耦组成的反馈环路、鉴幅电路


光耦---发光二级管反压大约5V、也有放大状态、饱和状态、CTR


温度对元器件的影响:高温、低温,以及相关特性曲线



电源控制器


一、保护功能


过压、过流、短路保护


二、环路及地线


环路为什么形成正反馈或自激:我们知道环路要稳定,一般要实行负反馈控制。像boost电路,LED-端检测通过检测电阻上的电压实现检测电流的大小,但是不能直接将这个检测电压反馈回主IC,因为环路中会存在很多高频的干扰,而这些高频的干扰是没有用的,我们一般要将这些高频干扰滤除掉。滤掉这些高频干扰需要在检测前加个RC吸收电路。


如下图红圈



但是加的这个RC电路时间常数不能太大,也不能太小


1、太小的话某些高频干扰可能不能滤掉。


2、太大的话可能会造成自激也就是正反馈,当此RC滤波的频率低于MOS管的开关频率时就会形成正反馈,即当上一个周期的采样的信号是让MOS管增大占空比,此时LED 快速升到我们想要的电压,但是由于RC充放电速度太慢导致采样的信号还停留在电压不足的过程,所以还会继续让LED 端升压。


影响环路的因数:电容、电感、MOS管的开关速度。




三、 典型电路


1BOOST电路升压二极管反向恢复损耗问题:①引起MOS管开机瞬间有电流过冲、②二极管在CCMBCMDCM中反向恢复损耗。


2LLC模块电路总结:


①两个谐振频率当开关频率时,谐振腔呈感性利于MOS管实现ZVS


是次级整流管不能实现ZCS,会造成整流管引起反向恢复损耗问题而温升偏高,不过现在大多数整流管都使用的是肖特基二极管,大大降低二极管损耗。









本文整理自百度文库《电源可靠性评估》


https://wenku.baidu.com/view/60515b9d6c175f0e7dd1376c.html



—END—


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭