当前位置:首页 > 电源 > 松哥电源
[导读]IGBT数据表中连续集电极电流IC,也称为直流集电极电流,先对比一下二家不同公司的额定电流相同的IGBT产品(10A/600V)的数据表,可以看到标称的连续集电极电流IC的差异。厂家1:厂家2:在数据表中,25℃和100℃时,二个标称相同额定电流的IGBT,IC并不相同。那么,I...


IGBT数据表中连续集电极电流IC,也称为直流集电极电流,先对比一下二家不同公司的额定电流相同的IGBT产品(10A/600V)的数据表,可以看到标称的连续集电极电流IC的差异。

厂家1:


厂家2:

在数据表中,25℃和100℃时,二个标称相同额定电流的IGBT,IC并不相同。那么,IGBT的数据表中,最大的连续集电极电流IC,到底如何定义呢?

数据表中IGBT的最大连续集电极电流标示为IC,通常这个电流是一个计算值。当器件的封装和芯片的大小一定时,如对于底部有裸露铜皮的封装TO220,D2PAK,DPAK等,那么器件的结到裸露铜皮的热阻RthJC是一个确定值,根据硅片允许的最大工作结温TJ和裸露铜皮的温度TC,就可以得到器件允许的最大的功耗PD,如公式(1)所示。

(1)

IGBT流过最大的连续集电极电流IC时,集电极、发射极的饱和压降为VCE(sat),ICVCE(sat)的乘积,等于IGBT允许的最大功耗PD

(2)

因此,二式联立,可以得到最大的连续集电极电流IC的计算公式: 

(3)

由公式(3),求解最大连续集电极电流IC的关键,就是如何选择VCE(sat)VCE(sat)是数据表中列出的集电极发射极的饱和压降吗?下面就以厂家1的产品为例,来看看计算的结果。


在产品的数据表中,TJ为175℃,RJC=1.35K/W,由公式(1)可以分别得到TC=25℃、TC=100℃的最大功耗。


可以看到,数据表中,TC=25℃时,PD=110W,因此,计算结果是相符的。数据表中也列出了由公式(1)计算得到的TC和器件最大功耗PD关系,如图1所示。


图1:TC和最大功耗PD关系

 

数据表中,TJ=175℃时,VCE(sat)=1.8V,由公式(3)分别计算TC=25℃、TC=100℃的最大连续集电极电流IC



数据表中,TC=25℃、TC=100℃的最大连续集电极电流IC,分别为24A18A,因此,最大连续集电极电流IC的计算结果和数据表中的结果完全不一致,那么问题在哪?很明显,是集电极发射极的饱和压降VCE(sat)的选择出了问题。

 

数据表中,TJ=25℃、TJ=175℃的VCE(sat),测试的条件是VGE=15V,IC=10A


 

因此,使用数据表中IC=10A的集电极发射极的饱和压降VCE(sat),来计算最大连续集电极电流IC,是不正确的。因为IGBT的IC不同,饱和压降VCE(sat)也不同,如图2所示。


 图2:TJ和饱和压降VCE(sat)关系

 

根据数据表的图2、图3、图4可以得到:

当VGE=15V,IC=10A,TJ=25℃时,VCE(sat)=1.5V

当VGE=15V,IC=10A,TJ=175℃时,VCE(sat)=1.8V


图3:TJ=25℃, IC和VCE关系


图4:TJ=175℃, IC和VCE关系

 

那么,如何确定最大连续集电极电流IC所对应的集电极发射极的饱和压降VCE(sat)呢?

 

最大连续集电极电流IC的边界限制条件是TJ=175℃,图4就是TJ =175℃时,ICVCE的关系,就可以用图4中曲线左边的饱和区来确定:当VGE=15V时,最大连续集电极电流IC所对应的集电极发射极的饱和压降VCE(sat)


在图4中,把VGE=15V的曲线左边的饱和区做线性化处理,如图5所示,直线的斜率为(VCE作为纵坐标Y轴)

(4)


 图5:TJ =175℃,VGE=15V,IC和VCE关系

 

当VGE=15V,VCE和IC关系(直线)表达式为:

(5)

 

联立公式(3),得到:

(6)

 

求得:

(7)

 

由图5,可以得到:VCE0=0.8V,R=0.122,由公式(7)分别计算TC=25℃、TC=100℃的最大连续集电极电流IC


 

数据表 TC=25℃、TC=100℃的最大连续集电极电流IC分别为24A18A计算结果和数据表的值非常接近。上述计算误差的原因可能在于:(1)数据表中电流值,计算时热阻可能使用典型值;(2)基于图5的求解,具有一定误差,数据表基于输出特性实际测试数据,计算然后进行校正,结果更为准确


由图5可知:当VGE的电压不同,IC也会不同。数据表中也列出了 TC和IC的关系曲线,它们不是线性的关系


图6:IC和TC的关系


实际应用中,这个电流还应该受到封装限制,封装限制通常是指连接线的电流处理能力,导线直径对于流过的电流也有一定的限制。封装限制的集电极连续电流,通常小于上述计算的电流。对于额定的连接线的电流限制,常用方法是基于连接线的熔化温度,可以参考下面的文章。

功率MOSFET铝接合线的连续电流实验

功率MOSFET连续漏极电流额定值接合线限制


因此,IGBT数据表中的最大连续集电极电流IC,是基于最大结温TJ、铜皮壳温TC、器件热阻RthJC的计算值,和实际测量值相差非常大,使用中只能供参考。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭