当前位置:首页 > 消费电子 > 消费电子
[导读]自从2016年AlphaGo打败李世石之后,人工智能的能力开始逐渐被世人了解,人工智能开始真正落地。Gartner的数据显示,到2020年,人工智能预计将减少180万个就业机会。好消息是,它也将创造230万个就业岗位。如今,AI相关专利申请量飙升,AI芯片需求也不断增加,微软已决定采购华为新开发的AI芯片应用于中国的数据中心。

自从2016年AlphaGo打败李世石之后,人工智能的能力开始逐渐被世人了解,人工智能开始真正落地。Gartner的数据显示,到2020年,人工智能预计将减少180万个就业机会。好消息是,它也将创造230万个就业岗位。如今,AI相关专利申请量飙升,AI芯片需求也不断增加,微软已决定采购华为新开发的AI芯片应用于中国的数据中心。

然而,人工智能技术的发展与落地应用还远未成熟。对人工智能硬件而言,算力是技术实现的保障,这需要大量强有力的数据中心提供基础支持。但传统数据中心存在诸多痛点,亟需借力人工智能,开展数据中心的革命。

实际上,人工智能的发展少不了数据中心的支撑,与此同时,智能化是未来能源基础设施发展的必由之路,在此过程中,人工智能也将助推数据中心朝智能化方向发展。

数据中心与AI如何擦出火花?

数据中心成千上万台服务器为人工智能所需的计算能力提供了物理基础,人工智能也将给数据中心带来了新的革命,其带来的积极影响主要有三个方面。

一是便于数据中心管理和控制。未来的数据发展必将走向软件定义,但随着数据中心呈现复杂化,人工处理的精力和能力都有限。如果通过人工智能利用其学习能力,对以往管理数据进行智能分析,就可得到可观准确的决策。

二是降低数据中心能耗。数据中心是能耗大户,巨额的电能费用已经成为数据中心高速发展的瓶颈,很多互联网巨头的自建数据中心开始想尽一切办法去降低能耗。人工智能技术就可以充分计算PUE值,再根据PUE值反推哪些因素对其影响最大,再去优化这些部分,从而达到降低能耗的目的,提升数据中心运行效率。

例如,谷歌使用DeepMind提供的AI技术,在机房的能耗上获得了大幅的削减,相应减少PUE值。具体而言,通过建立机器学习的模型,对机房的PUE指标趋势进行预测,从而指导制冷设备的配置优化,减少了闲置的用于制冷的电力消耗。这项技术能够为谷歌减少15%的数据中心整体耗电量,节省下来的成本相当可观。

三是数据中心的数据加工。数据中心拥有海量数据,原有的计算方式效率太低。借助AI技术的智能化运维,就可以对这些数据进行深度分析,将数据进行过滤、整理、组建各种模拟模型,这些加工后的数据可能会产生巨大的价值。如果是数据中心的运行数据,则可以通过智能运算,获得提升数据中心运维水平机会;如果是数据中心的存储数据,则可以通过只能运算获得行业市场状况,进行人员特征的分析等。

数据中心运维日趋智能化

人工智能为数据中心提供了全新的机遇:未来可以建设智能化的数据中心,用来替代简单重复劳动,在大量数据中提取规律性信息,大量方案中优选最佳方案,复合数据环境下选择最优模式。

具体到智能运维领域,目前依靠已有的日志进行模式识别,可以实现实时监控,潜在故障告警,实时故障定位,重点区域问题监控,还可实现解决方案智能化推荐;在节能降耗方面,可实现整个基础设施的智能化管理,提高可靠性,降低IT能耗,减少制冷消耗,从而节省电力。

然而,人工智能亦对数据中心带来了不小的挑战。据信通院研究数据显示,在供电方面,AI使得数据中心功率密度从5kW提升到21kW及以上,给供配电基础设施带来挑战;在制冷方面,AI带来的高功率带来高散热,风冷向液冷转变;在边缘计算方面,AI使得网络限制数据需要端侧处理,要建设好边缘数据中心。

智能微模块3.0将成智能化里程碑

目前,行业内已有不少智能化数据中心解决方案问世。以华为公司为例,2018年6月CEBIT2018期间,华为发布了一款名为“智能微模块3.0”的智能化解决方案,主要围绕(iPower,iCooling,iManager)特性,加入AI优化运行算法,实现数据中心基础设施整体功能的智能化融合,使得数据中心的高效智能如虎添翼。

智能微模块3.0将通过智能化AI算法主动判断运行状态,实现供电链路毫秒级故障检测,秒级故障定位,毫秒级故障隔离,分钟级故障恢复功能;突破行业困扰已久的冷媒泄漏检测难题;提升数据中心全生命周期空间、电力、制冷及人力资源的高效利用。

其中,iPower可实现供电全链路可视及告警精确定位,并拥有基于AI技术的电池管理系统,配合毫秒级故障隔离,以保障供电的可靠性。iCooling,基于AI的自优化算法,同等工况下温控系统节电可达8%;温控系统精确制冷,消除热点隐患,提升数据中心运行的稳定性。同时,AI算法支持空调冷媒容量的自检测,提高可靠性。iManager是智能微模块3.0的大脑,让机房运维变得更加简单、高效:底层设备借助先进的IoT技术,摆脱传统串口通讯速度慢的问题,同时设备高度自学习、自适应,为整个系统智能化打造坚实的基础;系统平台通过云化改造,构建DCIM+管理资源池,全球数据中心运营经验共享,迈出数据中心智能化、自优化的重要一步。对于出租型数据中心,华为DCIM+通过对租户资源使用情况进行动态分析,识别不同类型用户的需求,辅助数据中心的规划建设与扩容。智能识别高价值客户类型,牵引优势资源向高价值用户转移,优化资源配置,提升出租收益。

数据中心基础设施发展经历了散件化组合,产品化整合,智能化融合三个发展阶段。现在,华为将AI技术运用到数据中心基础设施管理中,能够大幅提升数据中心的可靠性、能源效率以及运维效率,最终帮助客户降低全生命周期TCO,增加收入。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭