当前位置:首页 > 消费电子 > 消费电子
[导读]左手材料(Left-Hand Material)也被称为双负媒质或者负折射率物质,是一类在一定的频段下同时具有负的介电常数和负的磁导率的材料。左手材料的思想最早由前苏联人V.G.Vesela

左手材料(Left-Hand Material)也被称为双负媒质或者负折射率物质,是一类在一定的频段下同时具有负的介电常数和负的磁导率的材料。左手材料的思想最早由前苏联人V.G.Veselago提出,电磁波在左手材料中传播时,电场、磁场和波矢量满足左手螺旋关系,同时相速度与能流方向相反。随着近年研究的深入,左手材料发展迅速,在很多领域得到应用。2002年,UCLA的Itoh教授等人提出了左右手复合传输线(CRLH TL)理论,利用微波元件制成人工的左右手复合传输线。这种结构具有较低的插入损耗和较宽的带宽,并具有相位超前等特性,在工程中有很大的应用前景。

相控阵雷达是雷达技术发展一个极为重要的方向,而频扫天线技术是相控阵雷达技术最为关键的部分之一。常规的频扫天线多采用慢波结构提供相位变化进行扫描,但是微带线损耗较大,很大的影响了天线的增益。已有的研究证明,利用左右手复合传输线代替慢波线实现串行功分器具有带宽宽、体积小、插入损耗小的优点。但是常规的利用交指电容结构的左右手复合传输线,交指电容值很难做大,限制了这种传输线在低频部分的使用。2009年,Amr M. E. Safwat提出了一种基于微带耦合线的左右手复合传输线(CL-CRLH TL),这种传输线具有更宽的频率范围,能够提供更多的相位超前,损耗更小,结构简单易于实现。本文提出一种新型频扫天线阵列,利用耦合线左右手复合传输线构成串行馈电网络,可以扩展天线阵的频带范围,降低损耗、提高天线阵的增益,并且具有很大的角度扫描范围。天线阵各阵元采用非均匀馈电方式,可以降低天线的旁瓣电平。本文设计的八元频扫天线阵列,在工作频带内扫描角度可达到-40°~10°,增益14dB,旁瓣电平低于-20dB。

2 频扫天线阵设计

2.1 耦合线左右手复合传输线设计

耦合线左右手复合传输线单元结构如图1所示[5],是将耦合微带线的两个端口短路变形后得到,将图1所示的单元结构周期连接即可形成左右手复合传输线。本设计中将七个单元结构周期连接,并与一段微带线相连构成左右手复合传输线,如图2所示。

 

 

图1 耦合线左右手复合传输线单元结构

 

 

图2 耦合线左右手复合传输线

介质基板介电常数为2.65,厚1.5mm,仿真结果如图3所示。其中图3(a)为耦合线左右手复合传输线回波损耗特性曲线,由图可知该传输线有很宽的工作频带,并且在低频的损耗也很小,在0.5GHz~2.79GHz频率范围内回波损耗均小于-10dB。图3(b)为相位特性曲线,由图可知在其工作频带内有相位超前的特性,并且有很大的相位变化率。在1.25GHz~1.4GHz频率范围内相位变化范围为129°~ -29.8°。

 

 

图3 CL-CRLH TL仿真结果

2.2 串行馈电网络设计

天线阵采用串行功分器作为馈电网络,串行功分器主干为左右手复合传输线,并在功分器各级和输出端口都匹配到50Ω,其结构如图4所示。

串行功分器可以认为是T型结功分器的级联,单节T型结功分器结构如图5所示。T型结功分器满足如下关系:

 

 

;

 

 

其中为输入端口特性阻抗,分别为两个输出端口特性阻抗,分别为两个输出端口的输出功率。

 

 

图4 馈电网络结构[!--empirenews.page--]

 

 

图5 T型结功分器结构

串行馈电网络中横向的阻抗变换采用阻抗变换器,纵向的阻抗变换采用单短截线匹配枝节进行匹配。各个阵元采用非均匀馈电,功分器的输出端口功率分配满足切比雪夫分布。根据端口功率分配的情况以及前述的T型结功分器功率与特性阻抗的关系,可以计算得出馈电网络中各个阻抗变换部分的参数。

2.3 天线阵设计

以前述的串行功分器作为天线阵的馈电网络,单元天线与馈电网络之间通过SMA接头连接。单元天线采用微带馈电型准八木天线。为了保证在大角度扫描时单元天线有足够的增益,使用单元天线的H面进行扫描。单元天线所在平面与馈电网络平面保持垂直。天线阵的实物如图6所示,介质基板介电常数均为2.65,厚1.55mm。

 

 

图6 八元频扫天线阵实物图

八元频扫天线阵的仿真结果如图7所示,其中图(a)为天线阵回波损耗特性曲线,由图可知在1.22GHz~1.48GHz频带内回波损耗小于-10dB。图(b)为天线阵频扫特性曲线,由图可知天线阵扫描角度可以到达-40°~10°,天线阵增益为13dB~ 14.7dB,在扫描角度范围内旁瓣电平可以达到-24dB。

 

(a)天线阵回波损耗仿真结果

 

 

(b)天线阵频扫特性曲线

图7 八元天线阵仿真结果

3 测试结果

对八元频扫天线阵实物进行测试,测量天线阵的回波损耗以及方向图。

用安捷伦E8363B型矢量网络分析仪测量天线阵的回波损耗,测量结果如图8所示。由图可知在1.2GHz~1.5GHz频带内回波损耗小于-10dB,1.25GHz~1.4GHz频带内回波损耗小于-18.5dB。

天线阵方向图测试结果如图9所示,由测试结果可知,频率从1.25GHz变化到1.4GHz,扫描角度相应从-40°变化到10°。

天线阵的测试结果与仿真结果符合较好,在工作频带内天线阵有良好的频扫特性,扫描角度范围大、损耗小。

 

 

图8 天线阵回波损耗测量结果

 

 

图9 天线阵频扫特性

4 结论

本文提出了一种基于耦合线左右手复合传输线的频扫天线阵列,利用耦合线左右手复合传输线构成天线阵的馈电网络。由仿真与实物测试结果可知,该天线阵具有良好的频扫特性。与常规的慢波线结构频扫天线相比,具有体积小、结构简单,工作频带更宽、损耗更小,扫描角度范围更大等优点。天线阵各个阵元采用非均匀馈电的方式可以有效的降低旁瓣电平。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭