当前位置:首页 > 消费电子 > 消费电子
[导读]  悬而未决的产线问题  使用空中下载(OTA)的无线传输的方式(也称为无线耦合模式)为待测物(DUT)的RF部份进行测试,一直是许多ODM与OEM厂商多年来努力想要达成的目标。事

  悬而未决的产线问题

  使用空中下载(OTA)的无线传输的方式(也称为无线耦合模式)为待测物(DUT)的RF部份进行测试,一直是许多ODM与OEM厂商多年来努力想要达成的目标。事实上,采用与DUT天线直接无线耦合以避免RF实体连接的测试模式已历经多方尝试了,但由于以下种种原因而无法得到令人满意的结果:

  ‧大部份的天线主要依靠电场进行传输,即使DUT的位置些微改变,也会让测试结果出现很大的变化。

  ‧相对于稳定的测试作业,具有多支天线的DUT上各天线之间的交互耦合通常会太强。

  ‧甚至要从整合于PCB的2.4GHz与5GHz小型天线取得高效能也相当具有挑战性,尤其是高度全向性以及效率达60-80%的天线。

  然而,这些要求正是进行OTA测试的基本必要条件,透过一款结合CPL天线与测试设备实现的无线耦合测试方案,可望满足所有的要求,在Wi-Fi产品的生产制造过程中实现精确且低成本效益的测试。

  CPL天线是一款结合磁圈辐射器与同位电场辐射器的复合式天线。相较于传统天线技术只激励电辐射器或磁辐射器,CPL天线同时激励两种辐射器,大幅提高了性能与辐射效率(达90%)。

  OTA/耦合测试概念验证

  为 了验证以CPL天线与生产级测试治具进行OTA测试的概念,DockOn已经使用网络分析仪以及LitePoint IQxel80对数十种DUT进行了大量测试作业。为了避免由于使用不同测试仪器而造成的结果差异,所有的主动测试都采用同一台IQxel80进行量测。 虽然从已有的测试结果中可以得到相当好的关连性,但针对更多待测组件进行重复性测试,可望取得更准确与完整的统计结果。测试的项目包括:

  ‧待测电路裸板测试结果的可重复性,以及在多个不同测试位置的耦合损耗。

  ‧在涵盖2.4-2.5GHz及5-6GHz频段的不同频段进行测试。

  ‧以产品测试脚本为具备完整功能的DUT进行超过25次的量测,以验证结果的可重复性。

  ‧为非指定天线进行交互耦合量测。

  ‧在OTA与传导模式下为DUT进行校正与测试结果比较。

  ‧在近场耦合下的天线特性以及非完美RF连接器影响测试结果。

  简单地说,实验数据显示,在2.4-2.5GHz与5-6GHz频段下,针对RF传输校正与验证以及接收时,采用OTA模式的天线性能、设定与匹配度均较采用传导模式时更具有可重复性。

  首先,当板间距离为3mm并使用CPL天线时,OTA模式的耦合损耗非常低,在2.4-2.5GHz和5-6GHz频段时的损耗分别低于7.6dB与 12dB。其次,以3mm间距进行耦合时不至于产生失调或感应度降低的现象,在5-6GHz频段的频率响应也具有高线性度。此外,在两组频段的变化范围都 小于+/-0.7dB,实现高精确度。

  再者,为相同的DUT重复进行OTA主动测试以验证测试设定,可测得不错的传输功率标 准差结果,而平均脚本测试的整体结果,可得到的数据在2.4GHz及5-6GHz分别为0.21dBm及0.28dBm。最后,比较在OTA及传导模式下 的DUT测试结果,在2.4-2.5GHz频段时十分匹配,二者的平均标准偏差均为0.2dBm;而在5-6GHz频段,OTA及传导模式分别为 0.44dBm及0.63dBm。

  验证结果的采样

  以下为验证与比较在OTA与传导模式下所测量的数据结果。

  

 

  

 

  表1:以十片裸板进行重复测试取得的耦合损耗S21

  S 参数的测量可作为OTA测试技术的一种验证方式:以半柔性的电缆线将DUT裸板上的天线Ai及参考裸板上的天线ARj连接至网络分析仪,在考虑缆线损耗的 条件下,测量天线间的无线能量传输。针对多片电路板重复同样的测试时,必须考虑各种不同天线组合的耦合情况,以便验证在FR4 PCB产品上天线性能的稳定度──在i=j时,Ai与ARj之间的低耦合损耗,以及在i≠j时,对Ai与ARj之间交叉耦合抑制。

  在此操作程序中也包含确定OTA耦合测试的最小距离以及验证天线在近场范围内的工作性能。表格1中总结了以十片DUT裸板与测试治具上的参考天线进行无线耦 合测试的结果:耦合损耗小于12dB,对于目标频带内的任意频率,十片DUT的平均标准偏差值为小于+/-0.7dB,表现不错的量测结果。

  

 

  

 

  图3a/3b/3c:以完整测试脚本对一片主动待测电路板进行约30次重复测试

  

 

  表格2:以一片主动待测电路板进行29次重复传输功率量测(同一量测脚本)[!--empirenews.page--]

  验证完整OTA建置的一项良好指标是为同一DUT重复多次同样的测试脚本(例如30次)。记录每次实验量测到的传输功率最大值与最 小值,,即可绘制成图3a(2.4-2.5GHz)与3b(5-6GHz),显示不错的量测结果:在所有的量测结果中最坏情况下的Max-Min值在 2.4-2.5Hz时为+/-0.41dBm,而在5-6GHz时则为+/-1.32dBm。另一方面,整体量测的标准偏差平均值在2.4-2.5GHz及 5-6GHz频段分别为0.21dBm与0.28dBm,相较于采用传导模式时通过与否(pass/fail)的业界标准值──在2.4-2.5GHz 为+/-1.5dBm以及在5-6GHz为+/-2.0dBm,OTA测试模式的结果表现更好。

  图3的柱状图也显示出一项 以MCS-7高资料率(在80MHz高频信道实现5120MHz工作频率)进行测试的传输功率分布图。相较于判断通过与否的标准范围而言,这个分布范围相 对较窄。以传导模式进行类似的重复性测试(将测试接头断开后后重新接上并重复测量30次)取得传输功率极大值与极小值的最坏结果,在2.4-2.5GHz 与5-6GHz频率时分别为+/-0.37dBm与+/-0.62dBm。当然,这些结果只是对有限数目的样品实验取得的数据结果,后续更多的测试将可以 提供更为准确的统计数据。

  

 

  图4a/4b/4c/4d/4e以完整测试脚本对25片主动DUT进行OTA与传导模式的量测结果比较

  

 

  表格3:对多于25片DUT测试OTA与传导模式传输功率的结果比较

  从图4a及4b可以观察到OTA模式和传导模式的测试结果在2.4-2.5GHz表现出非常好关联性。图4c与4d可观察到在5-6GHz频段中传输功率的 匹配也很好,平均二者的差异小于0.5dB。从第4张图可以观察到OTA测试结果的分布变化情况比传导模式的更好,即使EVM分布范围稍宽,但还是在判断 通过与否的最小范围内。由于第15、17及19次的测试值EVM最高值为-29、-27及-28dB,而与其相对应的三个低数据传输速率为OFDM6或者 MCS0模式,因此并不会造成任何影响。对这三种情况而言,EVM通过与否的判断标准最高值为-5dB,因此,OTA量测结果完全可以通过EVM的要求规 格,两者的值之间还有相当大的空间。

  表格3为传输功率结果的总结。值得注意的是,在无线耦合与传导模式的RF 连接二者间的差异可能会影响发射功率放大器(PA)的匹配阻抗,这也就是在前后端出现一些较小偏差的原因。因此,针对发射端的量测作业,无线耦合测试才是 较实际的量测方法,因为在实际的情况下,发射端后面接的就是天线,而在传导模式中天线部份则完全被忽略了。

  DockOn的OTA/耦合测试解决方案

  Dockon 的解决方案是使用CPL印刷天线以及一款精确的测试治具,并以DUT裸板作为参考天线耦合器。将参考天线连接到零压力连接器,经由标准SMA电缆接取至 LitePoint的Wi-Fi测试仪器(如IQxel),使用一台预载测试软件(如IQfact+)的计算机来控制测试仪器与DUT。除了测试治具以及软 体设定以外,不必再为标准RF测试站台进行任何改变。

  ‧测试步骤包含二个部份:首先使用一个作为参考的黄金单元(GU)DUT对测试站进行一次性校准。其次,以GU作为参考,校准并测试每一片待测电路板。

  ‧测试站的校准步骤:首先,使用GU进行归零校准,为测试脚本的所有频率确定从GU的发射机部份到LitePoint测试设备的校准系数。接着,将所取得的校准系数输入测试软件(仅限1次),这组系数将用于对后续每件DUT进行OTA测试。

  ‧DUT测试步骤:首先将DUT放在OTA耦合装置治具上; 接上电源线与数字网络线,关闭RF屏蔽盒,且无需任何RF联机。接着,以所收集到的校准系数执行LitePoint脚本(RF TX校准、TX/RX验证与EVM)进行量测。在测试结束后,打开RF屏蔽盒并移除DUT。

  此外,也可以在产线现场对无线耦合测试装置进行快速动态站校准验证。

  

 

  图5:OTA测试设备的简单方块图。

  结语

  OTA测试对于产品测试带来的好处:

  ‧降低剩余材料成本:在PCB上不需要RF连接器或RF切换/连接器,也不需要分离式天线配件(天线、同轴电缆与连接器)。

  ‧更低的维护成本:不必每15,000次工作周期后就为测试设备更换RF接头或电缆。

  ‧提升产线质量:在SMD组装线后不必再手动进行焊接或天线电缆连接。

  ‧灵活的测试台和设备:更方便地改变指定测试站的待测产品。

  ‧加速并简化生产测试以及经验证的解决方案。

  ‧整合的无线耦合解决方案:RF TX校准、RF TX/RX验证,以及数据吞吐量的验证。

  ‧无线数据传输速率测试成为测试选项: 产线测试的最终目标在于确定每个组件的正确焊接,这个部份-包括天线的测试-已经能够透过OTA 测试来完成了,因此,后续的无线数据传输速率测试可望成为一种选择而非必要的测试。

  如何在WiFi生产过程中进行耦合测试

  该解决方案是以利用DockOn的CPL天线技术为基础。DockOn的CPL天线特别适合于OTA/耦合测试:

  ‧ 由于磁场组件强大及宽带的特性,在短距离具有强大的耦合效果。

  ‧ 在近场中对失调与频率漂移的适应能力。

  ‧ 采用经验证且稳定的单层板技术。

  ‧ 在一般的FR4印刷电路板材可以有很高的辐射效率。

  因此,当产品中采用了DockOn的CPL天线设计,就可以在生产过程中采用OTA/耦合测试技术,以优化的测试设置协助制造商提升产量。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

摘要:本文提出一个兼容AirFuel 和 Qi两大无线充电标准的无线充电 (WPT) 天线配置和有源整流电路,并用Cadence Virtuoso 仿真工具评测了天线配置的性能,电路仿真所用的线圈参数是目前市场上销售的线...

关键字: 无线充电 天线 有源整流系统

在无线通信系统中,发射机、传输线和天线构成了信号传输的核心环节。其中,传输线扮演着至关重要的角色,它负责将发射机产生的射频信号有效地传输至天线,以实现信号的无线发射。本文将深入探讨传输线是如何连接发射机和天线的,并阐述其...

关键字: 无线通信 发射机 天线

充电效率低。无线充电器的充电效率通常只有有线充电器的50%~70%,这意味着无线充电的速度比有线充电慢。

关键字: 无线 充电器 无线充电

第五代移动通信技术(5th Generation Mobile Communication Technology,简称5G)是一种具有高速率、低时延和大连接特点的新一代宽带移动通信技术,5G通讯设施是实现人机物互联的网络...

关键字: htc 无线 5G通讯

支持CSA倡议表明,Nordic Semiconductor始终致力于为客户提供开发符合物联网设备安全规范的物联网产品所需的安全功能。

关键字: 物联网 无线

本文中,小编将对电感耦合予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 耦合 电感耦合 耦合电感

在这篇文章中,小编将为大家带来流固耦合的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 耦合 流固耦合

今天,小编将在这篇文章中为大家带来反应耦合的有关报道,通过阅读这篇文章,大家可以对反应耦合具备清晰的认识,主要内容如下。

关键字: 耦合 反应耦合

业内消息,近日新加坡 RF GaN(射频氮化镓)芯片供应商 Gallium Semiconductor(加联赛半导体)突然终止业务并解雇所有员工,包括位于荷兰奈梅亨的研发中心。

关键字: 芯片 射频 氮化镓 Gallium RF GaN

2024年1月18日 – 专注于引入新品的全球半导体和电子元器件授权代理商贸泽电子 (Mouser Electronics) 即日起供货Taoglas的柔性TFX隐形天线 (Invisible Antenna™)。该系列...

关键字: 天线 物联网 Wi-Fi
关闭
关闭