当前位置:首页 > 消费电子 > 消费电子
[导读]简介:采用DC/DC器件DCP0105B来控制电子产品内部不同电源系统配电时序,从而提高电子产品在上下电过程中的可靠性和安全性。1 引言电子产品在上下电过程中是一个暂态过程,其逻

简介:采用DC/DC器件DCP0105B来控制电子产品内部不同电源系统配电时序,从而提高电子产品在上下电过程中的可靠性和安全性。

1 引言

电子产品在上下电过程中是一个暂态过程,其逻辑控制是个复杂状态。在一些工业控制和军事应用领域,有些控制对象有严格的逻辑要求,不允许在此过程中有异常输出。同时在另外一些特殊运用领域对产品的安全性有特殊的要求,内部的部分逻辑或功能电路失效也会导致致命的危害,如运载火箭、导弹等。

以上这些电子系统如果是多电源系统,在设计时就必须考虑在产品上、下电过程中内部各档电源上、下电的先后次序,即产品配电的时序。同时如果该多电源是不共地系统,还必须考虑配电控制的地线隔离问题。

本文将介绍一种通过TI公司(原BB公司)的DC/DC器件DCP010512DBP来控制电子产品内部多电源上下电次序,从而保证产品控制输出的可靠性和产品的安全性。

2 DCP010512DBP特点及控制上下电原理

TI公司的DCP01B系列IC是一种小封装的1W可控DC/DC隔离转换器,隔离电压可达1000V,具有转换效率高(可达85%)、热保护、短路保护、可同步可控方式工作、EMC标准符合EN55022 CLASS B、元器件标准符合UL1950的特点。封装为DIP14(部分GULL-WING)。可运用于电源转换、地线环路消除(隔离)、数据获得、工业控制和测试设备上。该系列DC/DC转换器输入电压有+5V、+12V、+15V和+24V,转换输出电压有+5V、+12V、+15V。

DCP010512DBP是DCP0105系列产品中的一种,输入电压为5V,输出电压为双端:+12V,-12V,隔离电压为1000V。

采用DCP010512DBP控制上下电是利用DCP内部的看门狗电路。DCP器件内部逻辑功能参见图1。DCP的Vout输出是受SYNCin和VCC控制,且控制延时只有2us。内部看门狗电路监测VCC的电压,当VCC电压高于4V,这时如果SYNCin为高电平,DCP内部的起振电路工作,DCP010512DBP的DC/DC次级Vout便有+12V的输出。也就是说在上电过程中即使控制端SYNCin失控状态,在VCC到达4V以前,DCP的输出仍为低。而一般的电子系统VCC电压建立过程是毫秒级的,而TTL的逻辑电路在VCC达到3.5V以上便可建立稳态。如果用DCP的次级去控制大功率的电源,就能通过DCP的这个特性保证在逻辑控制系统稳定后再保证其他系统配电工作,从而完成电子系统上电过程的配电次序的硬件控制。同理,在下电过程中,当系统的VCC下降到4V以下后,看门狗起停振作用,这时DC/DC的次级没有输出,而此时逻辑TTL的控制电路还在正常的工作区域,当VCC降到3V以下逻辑控制失控时,DCP的次级早已没有输出,用于对其他电源的控制,也不会有输出,从而保证在下电过程中逻辑控制电路失控前,其他电源系统下电,不会有异常输出。

 

图1 DCP内部逻辑原理图

3 DCP控制上下电电路实例及分析

图2是一个双电源的电子产品内部逻辑示意图,其中+J和+B为两档不共地+28V的直流电源,+J通过DC/DC变换产生 逻辑控制电路用VCC,而+B为该电子产品驱动电路电源,负载较大。Qp为N-VMOS大功率管,而虚线部分电路为输出控制示意电路,该输出部分电路可能为多套,因此用?表示为其中某1套。其中Q?为输出驱动开关管,C?为逻辑电路产生的对开关管Q?控制信号,而O?为开关管Q?的输出信号。

 

图2 采用DCP控制+B上电时序逻辑图

如不采取上述电路,在系统供电时,+B电源先上电,C?在上电过程中可能有个暂态过程,在O?端就可能有信号输出;同理在+B未下电,而+J先下电,也可能因C?端下电过程失控而导致O?有异常输出。

在采用了图2电路控制后,+J电源变换的VCC在到达4V前,DCP010512DBP尚未开始工作,因此虽然+B电源已上电,但+B`电源未上电,所以不管这时C?的信号是不是正常,O?都能保证没有输出,只有在VCC到达+4V后,这时C?的控制信号已完成初始化控制,这时再接通+B`电源,就能保证O?端的输出受控;同理,在下电过程中当VCC低于+4V时,+B`电源先切断,这时逻辑电路还是正常状态,当VCC下降至+3V以下时,C?出现异常,则O?端也能确保无异常输出。

如果逻辑电路初始化较复杂或运用在一个嵌入式控制系统中,还可以通过对DCP的SYNCin引脚控制完成对+B电源的配电控制,确保产品内部电源控制的安全、可靠。

由于DCP0105的输入输出是隔离的,因此采用如图2电路,+J和+B电源仍然保持不共地的状态。

4 结束语

多电源系统的电子产品在上下电过程中会产生一个复杂的暂态过程,有时会出现设计者所不曾预见或不允许出现的状况。本文介绍采用TI公司的DCP0105系列器件对不共地多电源系统进行上、下电次序的管理可确保这个暂态过程输出的正确、可控,从而通过设计达到提高产品可靠性和使用安全性的目的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭