当前位置:首页 > 消费电子 > 消费电子
[导读]设计特色 采用革新性控制概念,能够实现元件数量少、成本极低的解决方案 初级侧控制省去了次级侧控制器和光耦器 恒压(CV)精度:±5% 恒流(CC)精度:&plusm

设计特色

采用革新性控制概念,能够实现元件数量少、成本极低的解决方案
初级侧控制省去了次级侧控制器和光耦器
恒压(CV)精度:±5%
恒流(CC)精度:±10%
带迟滞恢复的过热保护功能可确保PCB温度在所有条件下均处于安全范围内
自动重启动:输出短路和开环保护

极高能效
整个负载范围内的平均效率:74%(能源之星2.0要求为64%)
空载输入能耗:在230 VAC输入情况下小于40 mW

轻松满足以下标准要求:
EN55022和CISPR-22 B级传导EMI要求(EMI裕量>10 dBμV)
IEC 61000-4-5 3级AC电涌和ESD承受力
满足<5 mA的电池放电要求

工作原理

图1所示为2.75 W恒压/恒流(CV/CC)通用输入充电器电源的电路图,该设计采用了Power Integrations的LinkSwitch系列产品LNK613DG。这种设计非常适合手机或类似的USB充电器应用,包括手机电池充电器、USB充电器或任何有恒压/恒流特性要求的应用。

图 1. 2.75 W恒压/恒流通用输入充电器电源的电路图


在本设计中,二极管D1至D4对AC输入进行整流,电容C1和C2对DC进行滤波。L1、C1和C2组成一个π型滤波器,对差模传导EMI噪声进行衰减。这些与Power Integrations的变压器E-sheild™技术相结合,使本设计能以充足的裕量轻松满足EN55022 B级传导EMI要求,且无需Y电容。防火、可熔、绕线式电阻RF1提供严重故障保护,并可限制启动期间产生的浪涌电流。

图1显示U1通过可选偏置电源实现供电,这样可以将空载功耗降低到40 mW以下。旁路电容C4的值决定电缆压降补偿的数量。1μF的值对应于对一条0.3 Ω、24 AWG USB输出电缆的补偿。(10 μF电容对0.49 Ω、26 AWG USB输出电缆进行补偿。)

在恒压阶段,输出电压通过开关控制进行调节。输出电压通过跳过开关周期得以维持。通过调整使能与禁止周期的比例,可以维持稳压。这也可以使转换器的效率在整个负载范围内得到优化。轻载(涓流充电)条件下,还会降低电流限流点以减小变压器磁通密度,进而降低音频噪音和开关损耗。随着负载电流的增大,电流限流点也将升高,跳过的周期也越来越少。

当不再跳过任何开关周期时(达到最大功率点),LinkSwitch-II内的控制器将切换到恒流模式。需要进一步提高负载电流时,输出电压将会随之下降。输出电压的下降反映在FB引脚电压上。作为对FB引脚电压下降的响应,开关频率将线性下降,从而实现恒流输出。

D5、R2、R3和C3组成RCD-R箝位电路,用于限制漏感引起的漏极电压尖峰。电阻R3拥有相对较大的值,用于避免漏感引起的漏极电压波形振荡,这样可以防止关断期间的过度振荡,从而降低传导EMI。

二极管D7对次级进行整流,C7对其进行滤波。C6和R7可以共同限制D7上的瞬态电压尖峰,并降低传导及辐射EMI。电阻R8和齐纳二极管VR1形成一个输出假负载,可以确保空载时的输出电压处于可接受的限制范围内,并确保充电器从AC市电断开时电池不会完全放电。反馈电阻R5和R6设定最大工作频率与恒压阶段的输出电压。


设计要点

选择电容C7作为低ESR型电容,可以满足输出电压纹波要求,而无需使用后级LC滤波器。
如果可以接受较低的平均效率(降低3%到4%),则用PN结型二极管来替代D7,这样可降低成本。然后根据需要重新调节R5和R6,确保输出电压保持基本恒定。
在PCB板上,将旁路引脚电容(C4)靠近U1放置。
减小箝位和输出二极管的环路面积,以降低EMI。
使AC输入和开关节点保持一定距离,降低可能会绕开输入滤波的噪声耦合。
U1上高压引脚与低压引脚之间的爬电距离非常大,可以避免产生电弧并提高可靠性,这在非常潮湿的条件下特别重要。
R5和R6应使用容差为1%的电阻,这样可以提高电压和电流调节的准确度。

图 2. 25 °C情况下随输入电压变化的典型恒流/恒压特性曲线

图 3. EN55022 B标准的传导EMI结果。测量电压为230 VAC,输出RTN连接到接地端


表 1. 变压器参数。(AWG = 美国线规,TIW = 三层绝缘线,NC = 无连接)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭