当前位置:首页 > 电源 > 电源
[导读]本文主要通过对Droop法DC/DC变换器并联均流技术的研究,设计了一种基于反激式电路拓扑的两个DC/DC变换器并联输出的均流变换器。  单端反激电路的电路拓扑及工作原理  电路拓扑     图1 反激式变换器  反

本文主要通过对Droop法DC/DC变换器并联均流技术的研究,设计了一种基于反激式电路拓扑的两个DC/DC变换器并联输出的均流变换器。

  单端反激电路的电路拓扑及工作原理

  电路拓扑

  


 

  图1 反激式变换器

  反激式变换器是在基本Buck-Boost变换器中插入变压器形成的,线路组成见图1所示。变压器原边绕组其实是充当一个储能电感的作用,后文将叙述到初级电感量的设计将影响到反激式变换器的工作模式。

  电路工作的第一阶段是能量存储阶段,此时开关管Tr导通,原边绕组电流Ip的线性变化遵循式(1)。

  (1) 

 

  电路工作的第二阶段是能量传送阶段,此时开关管Tr关断,原边电流为零,副边整流二极管D导通,出现感生电流。并且按照功率恒定原则,副边绕组安匝值与原边安匝值相等。副边绕组电流Is遵循式(2)。

  (2) 

 

  其中为副边绕组电压,为变压器副边的等效电感。

  电路工作模式

  (1)工作模式改变的条件

  如图1所示的变换器,设开关管导通占空比为D1,二极管导通占空比为D2,工作周期为Ts,按稳态电感电流增量相等原则有:

  (3) 

 

  连续模式时,D1期间(开关管导通,二极管截止)存储在L上的能量在D2期间(开关管截止,二极管导通)没有完全放完,故有:

  (4) 

 

  不连续模式时,D1期间(开关管导通,二极管截止)存储在L上的能量在小于D2期间(开关管截止,二极管导通)已完全放完,故有:

  (5) 

 

  从而可以推导临界连续的条件是:

  D1+D2=1且每周期开始时的IP=0

  故有:

  (6) 

 

  其中,Lc为临界连续的电感值。

  代入式(3)有:

  (7) 

[!--empirenews.page--]
利用状态空间平均法可以建立CCM模式下的反激变换器的小信号模型,如图2所示。

  

 

  图2 CCM模式下的反激变换器的小信号模型

  从中可以导出开环输出阻抗为:

  (8) 

 

  其中 

 

  由式(8)可以看出,对设计好的Buck-Boost变换器,其输出阻抗仅为开关管导通比的函数。通过PWM控制开关管的导通占空比D,就可以控制变换器的开环输出阻抗。

  Droop法均流原理

  分布式电源系统并联使用的好处是可以实现电源模块化和标准化系统设计,可以实现冗余设计,提高系统的可靠性。但同时要求并联的电源之间采取均流(Current-sharing)措施,以保证并联电源模块之间的电流应力和热应力均匀分配。

  Droop法又叫改变输出内阻法、斜率控制法、电压下垂法、外特性下垂法、输出特性斜率控制法,线路简单,易于实现;均流精度不高,适用于电压调整率要求不高的并联系统。

  

 

  图3 开关电源电路模型

  

 

  图4 开关电源的输出曲线

  如图3所示的单个开关电源,它的输出特性曲线如图4所示,其输出电压Vo与负载电流Io的关系为:

  (9) 

 

  

 

  图5 两台开关电源并联的电路模型

  当两台开关电源按图5并联时,每个开关电源的负载电流为:

  (10) 

 

  (11) 

 

  其中 

[!--empirenews.page--]

 

  图6 并联后开关电源的外特性斜率

  从图6显见,外特性斜率小(即输出阻抗小)的电源,分配电流的增长量比外特性斜率大的电源增长量大。

  Droop法实现均流的主要手段就是利用电流反馈调节每个变换器的外特性斜率,使并联变换器的输出阻抗接近一致,从而达到输出均流。

  由前文所述,反激电路的输出阻抗为开关管导通占空比的函数,因此用反激电路实现Droop法均流的途径,应该通过电流检测信号控制开关管导通占空比来实现,或者说电流检测信号要参与PWM控制。

  本文用Droop法设计了两个12V输出的并联DC/DC变换器,结构如图7所示,技术指标要求如下。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

反激式开关电源以其电路结构简单、易于实现等优势,在众多电子设备中得到广泛应用。在反激式开关电源的诸多参数中,输出整流器占空比是一个关键变量,它对电源的损耗有着重要影响。深入研究二者关系,对提升反激式开关电源的性能与效率意...

关键字: 反激式 开关电源 输出整流器

在电子设备的稳定运行中,电源模块扮演着 “能量心脏” 的关键角色。然而,发热问题却如同潜藏的隐患,不仅可能导致模块性能衰减,严重时还会引发设备宕机甚至烧毁。深入探究电源模块发热的根源,对提升设备可靠性具有重要意义。经过工...

关键字: 电源模块 发热问题 电路拓扑

在现代电子设备中,开关电源因其高效、紧凑等优点而得到广泛应用。其中,反激式开关电源以其简单的拓扑结构和较低的成本,在中小功率应用场景中占据了重要地位,如手机充电器、LED 驱动电源等。然而,反激式开关电源输出电压中存在的...

关键字: 纹波 反激式 输出电压

采用SiC器件研制了一款全砖2 kW输出的移相全桥DC/DC变换器,并运用原边钳位二极管电路对输出整流管的电压尖峰进行抑制。现首先介绍移相全桥软开关拓扑的工作原理和整流管尖峰抑制电路,随后对变换器的关键参数进行设计,并给...

关键字: 移相全桥 DC/DC变换器 钳位二极管 零压开关

在电子技术的广袤天地里,三极管和 BUCK 降压电路作为两种重要的电子元件与电路拓扑,各自发挥着独特的作用。三极管凭借其电流控制与信号放大能力,成为模拟与数字电路中的关键部件;而 BUCK 降压电路则专注于电源电压的转换...

关键字: 三极管 降压电路 电路拓扑

在反激式开关电源的研究与应用中,一个值得关注的现象是其辅助绕组电压会随着次级输出功率的增加而上升。深入理解这一现象背后的原理,对于优化反激式开关电源的设计、提升其性能以及保障其稳定运行都有着重要意义。

关键字: 反激式 开关电源 辅助绕组

本文深入探讨了反激式开关电源中次级整流二极管过热的问题。首先介绍了反激式开关电源的工作原理以及次级整流二极管在其中的作用,详细分析了导致二极管过热的多种因素,包括二极管选型不当、电流过大、散热不良、反向恢复特性不佳以及电...

关键字: 反激式 开关电源 整流二极管

高频开关电源自二十世纪八十年代进入我国以来,凭借其体积小、重量轻、效率高、噪音低等优点,迅速在邮电通讯、电力部门及其他多个领域得到广泛应用。尤其在传统的工矿企业,如电解电镀、电化、电火花、电池充电、水处理、热处理、焊接和...

关键字: 高频开关电源 并联 功率

功率损耗模型生成工具现已包含无源元件,可更精准地进行设计建模,帮助客户加快产品上市

关键字: PLECS 模型 无源元件 电路拓扑

在小功率设计中,一般很少用到整流桥的并联,但在某些大功率输出的情况下,不想增添新的器件单个整流桥电流又不满足输入功率要求。

关键字: 整流桥 并联 电流
关闭