当前位置:首页 > 电源 > 电源
[导读] 全桥结构在电路设计当中有着相当广泛的作用。本文介绍了一种基于全桥DC-DC的隔离电源设计。文中提及的半桥IGBT板为两组隔离的正负电压输出,这样做是为了能够成为IGBT的驱

 全桥结构在电路设计当中有着相当广泛的作用。本文介绍了一种基于全桥DC-DC的隔离电源设计。文中提及的半桥IGBT板为两组隔离的正负电压输出,这样做是为了能够成为IGBT的驱动及保护。并且在实践设计时,需要根据选择的IGBT开关管参数和工作频率,来确定驱动板电源功率。而后对原边共用全桥控制的DC-DC电源设计进行了介绍,给出了变压器的选择方法。

IGBT半桥集成驱动板电源特点

半桥IGBT的有效驱动和可靠保护都由半桥IGBT集成驱动板来实现。半桥IGBT 集成驱动板自身必须具备两路DC-DC隔离电源,该电源要求占用PCB面积小、体积紧凑、可靠性高,并且两组电源副边完全隔离。在大功率半桥IGBT集成驱动单元的项目中,针对驱动单元需要高效、可靠的隔离电源,设计了一种电源变压器原边控制拓扑,即两组隔离电源变压器原边共用一组全桥控制的思路,提高了电源功率密度和效率,节省了功率开关数量。全桥开关管巧妙搭配,无需隔离驱动,减少了占用集成驱动板上的PCB面积。

半桥IGBT集成驱动板在两路驱动上表现出负载特性一致的原因是,因为上下半桥当中两个单元IGBT的性能参数一致,并且采用同体封装。因此在IGBT半桥集成驱动板的电源设计中,两组隔离的DC-DC电源原边完全可以共用一组控制电路。IGBT半桥集成驱动板一般镶嵌在IGBT功率模块上,它对驱动板的要求有两个:第一是半桥集成驱动板对PCB面积、体积要求很高,要求尽可能减小PCB面积和体积;第二因为驱动IGBT需要的功率较大,对板上电源的功率密度、效率要求也较高。

原边共用全桥控制的DC-DC电源设计

本设计采用了两个变压器原边共用,也就是全桥电路控制DC-DC电源变压器。正常模式下两个全桥变换拓扑需要两组全桥开关,同时全桥开关的脉冲驱动电路也为两组共8路PWM脉冲。采用共用全桥拓扑节省了控制电路和全桥开关,简化了DC-DC隔离电源电路。由于该电源是给半桥IGBT驱动电路供电,负载稳定且可计算,因此全桥DC-DC电源采用开环控制,满足最大功率需求即可。电路原理如图1所示,该电源由4部分组成:4路PWM脉冲产生电路、全桥驱动开关、电源变压器及其副边整流滤波电路。DC-DC电源输入为单+15 V电源,输出为两组隔离的+15 V和-10 V双电源,采用负电源是为可靠地关断IGBT。

图1 原边共用全桥电路的DC-DC原理图

共用全桥开关的两组DC-DC隔离电源工作原理为:对角的开关管同时开通,另外一组对角已经关断,此时两组磁芯原边同时正反相激磁,副边耦合,再进行全波整流滤波后得到稳定的电源。设计全桥开关工作频率为360 kHz,同时采用全波整流,因此副边不需要很大的滤波、储能元件,有利于实现DC-DC电源小型化。

全桥DC-DC电源参数为:输入+15 V、输出+15 V、-10 V、输出功率6 W、工作频率360 kHz。要求额定负载下动态特性、满足:+15 V波动<+1 V、-10 V波动<-2V、工作频率满足5%的偏差容限。其中工作频率由施密特触发器CD40106参数及RC数值决定。具体参数为:R=2.2kΩ、C=748 pF、VDD=15 V、VT+=8.8 V、VT-=5.8 V。根据式(1)计算出振荡频率为748.792 kHz,因为设计中多谐振荡器输出对2路RC充放电,充电电容容量增大一倍,因此振荡频率为上述计算频率的1/2,即374.396kHz。

原边共用全桥控制的4路PWM信号产生

传统的全桥DC-DC拓扑由4只相同的开关管组成,需要2路互反的PWM控制信号,每路PWM信号驱动对角的2只开关管,2路PWM信号要求有死区,避免全桥直通。全桥拓扑的上桥臂驱动必须隔离,否则无法完成正确驱动,隔离电路一般采用光耦或磁性器件实现,电路复杂、体积大。设计采用2个电源变压器原边绕组共用一个全桥开关,由于系统为+15 V单电源输入,因此全桥开关采用2片内含PMOS和NMOS的S14532ADY实现,此时PWM驱动脉冲无需隔离,即不用将全桥的上下臂驱动脉冲进行隔离,使用振荡电路的逻辑门进行驱动,简化了控制电路,同时该全桥开关为小体积的SO-8封装,实现了最小PCB设计。据此原理设计全桥开关需要4路PWM 脉冲驱动,分为2组,每组内互反,驱动对角的PMOS和NMOS开关,2组之间带有死区,具体的4路。G11、G2、 G22、G1为4路PWM驱动,T1、T11为两个DC-DC电源变压器,此处只画出了原边绕组,C为隔直电容,能够有效地防止变压器磁芯饱和。可以看到,对角的开关同时导通,两组对角交替开关,两个变压器磁芯工作在I、Ⅲ工作象限,双向励磁,有利于实现高功率密度。

一般PWM驱动产生方法用MCU、DSP或专用IC产生,难以实现低成本和紧凑设计。文中对通用多谐振荡器电路进行改进,分别增加两个二极管、电阻及电容,即可输出满足上述要求的4路PWM驱动信号,简化了电源设计,提高了可靠性。

DC-DC电源变压器的选择及设计

系统电源采用全桥驱动,磁芯工作在I、Ⅲ象限,驱动上要能够防止磁芯饱和,同时要求效率高、体积小。基于上述考虑,选用环形磁芯T10×6×5,材质为PC40,环形磁芯漏磁小、效率高。具体参数为:μi=2 400,Ae=9.8 mm2,Aw=28.2mm2,J=2A/mm2。系统工作状态为:ηB=90%,Km=0.1,fs=366 kHz,Bm=2 000 GS,根据P0=Ae×Aw×2×fs×Bm×J×ηB×Km×10-6。得出P0=9.8×10-2×28.2 x 10-2×2×366×103×2 000 x 2×0.9×0.1×10-6=7.3 W,理论计算表明,所选磁芯满足设计的功率要求。

变压器匝数设计是根据式(2)和式(3)计算,其中μi为输入电压最小值,△Vce为额定电流下全桥回路开关管压降,Dmax=0.48;μo为输出电压额定值,△Vd为输出额定电流下全波整流二极管压降。理论计算原副边匝数为:原边Np=4.6匝,副边Ns1=5.8匝,Ns2=3.9匝。

Np=[(μi-△Vce)×Dmax]/(2△B×Ae×fs) (2)

Np=[(μo-△Vd)×(1-Dmax)]/(2△B×Ae×fs) (3)

实际调试结果为:原边p=6匝,副边Ns1=8匝,Ns2=5匝。

带死区的4路互补PWM信号仿真

两路DC-DC电源变压器原边共用全桥拓扑,全桥电路的4路PWM信号是在多谐振荡器电路的基础上添加几个无源器件生成的,并且产生的两组驱动信号带有死区,能够有效防止全桥开关器件直通。电路的工作原理是:对通用多谐振荡器输出加以改进,使其充放电电容容量不同,产生2路充放电曲线略有差异的波形,这个差异就会在两组PWM波之间产生死区,再分别经过同相器和反相器,即可产生4路满足驱动要求的PWM脉冲。

4路PWM生成电路的Saber仿真原理图及仿真结果如图3(a)和图3(b)所示。由仿真结果可以看出,4路PWM脉冲能够满足共用全桥拓扑的控制要求。

实验结果

图4(a)所示为实际全桥DC-DC电源变压器原边及副边绕组带载波形,其中CH1为原边线圈两端电压,CH2为副边线圈正电压。由于器件分散性,实际测试DC-DC电源工作频率为366 kHz,频率偏差为3.8%,满足设计要求。图4(b)所示为动态加载输出波形,其中CH1为输出正电压,CH2为输出负电压。测试时负载为35 Ω/10 W,可以看到突加突卸额定负载时输出正电压较平稳,波动<1 V,满足设计要求。负电压稍有波动,考虑到IGBT负压是用来维持关断状态,负压在-5~-15 V即可,因此满足半桥集成驱动电源的要求。

 

本篇文章通过对原理的分析和计算,介绍了一种比较稳定且性能较高的DC-DC隔离电源设计,这种设计不仅容易安装,还能与IGBT模块完美集成。并且在最后通过对实验结果的分析,证明了该种电源的高效性和可靠性,达到了设计目的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

泰克科技这一全新的产品组合提供一整套独一无二的功能,能够满足从超低功率到超高功率的储能和电源电子设计需求。随着EA的加入,泰克科技能够为那些正在促进世界电气化的工程师们提供更全面的装备。

关键字: 电源设计

中国上海(2024 年 3 月 6 日)– 德州仪器 (TI)(NASDAQ 代码:TXN)今日推出两个全新的功率转换器件产品系列,可帮助工程师在更小的空间内实现更高的功率,从而以更低的成本提供超高的功率密度。德州仪器新...

关键字: 电源设计 变压器 氮化镓

1月16日,大联大控股宣布,其旗下友尚推出基于安森美(onsemi)NCP1681和NCP4390芯片以及SiC MOSFET的3KW高密度电源方案。

关键字: 电源设计

负电压电源设计在电子设备中具有广泛的应用价值。本文将介绍负电压电源设计的基本原理和方法,并探讨其应用方案。

关键字: 负电压电源 电源设计

电子电度表是一种广泛应用于电力测量和计量的设备,其电源设计的合理性和可靠性直接影响到表计的精度和稳定性。本文将详细阐述电子电度表电源设计的原理、实现方法、影响因素和实际应用效果,以突出电源设计在电子电度表中的重要性和必要...

关键字: 电子电度表 电源设计

便携式仪表中的电源设计是确保设备正常运行的关键部分。本文将介绍如何实现便携式仪表中的电源设计,包括设计思路、电源模块设计、充电模块设计、保护模块设计和应用实例等方面。

关键字: 便携式仪表 电源设计

北京2023年9月21日 /美通社/ -- 作为"基因工厂"概念的提出者和践行者,擎科生物始终坚持数字赋能技术创新的理念,在基因工厂各环节进行关键性技术突破,以实现基因合成自动化、智能化生产,推动科学...

关键字: 高通 自动化 TIMES 全自动

【2023年7月27日,德国慕尼黑讯】在静态开关应用中,电源设计侧重于最大程度地降低导通损耗、优化热性能、实现紧凑轻便的系统设计,同时以低成本实现高质量。为满足新一代解决方案的需求,英飞凌科技股份公司(FSE代码:IFX...

关键字: 静态开关 MOSFET 电源设计

TFT-LCD发明于1960年经过不断的改良在1991年时成功的商业化为笔记型计算机用面板﹐从此进入TFT-LCD的世代。

关键字: TFT-LCD 显示器 电源设计

为增进大家对电源的认识,本文将对电源的分类以及电源设计的一些相关问题予以介绍。

关键字: 电源 指数 电源设计
关闭
关闭