当前位置:首页 > 电源 > 电源
[导读]配网自动化是国家智能电网建设的重要工作内容之一,在国家电网“统一规划、统一标准、统一建设”的工作指导原则下,各类参与国家电网公司管辖下配电自动化建设的

配网自动化是国家智能电网建设的重要工作内容之一,在国家电网“统一规划、统一标准、统一建设”的工作指导原则下,各类参与国家电网公司管辖下配电自动化建设的公司,在研制和生产配网终端设备(FTU/DTU)时,需要符合国家电网企业标准Q/GDW382-2009 《配网自动化终端及子站规范》对终端设备的应用功能、性能指标、系统配置及各类接口的规范要求。

案例描述:

某厂商在设计和生产FTU系统控制器时,选用具有蓄电池充电功能的AC-DC电源模块,以满足FTU由市电220VAC和后备电源供电的要求。该电源模块本身已符合相关的EMC性能等级要求,但客户在进行控制器整体EMC共模浪涌测试项目时,发现系统控制板存在复位重启等工作异常情况。根据客户反馈其在设计选型时,已结合系统参数选择满足对应EMC等级要求的隔离开关电源产品,理应不存在此类工作异常情况。这容易误以为是电源模块问题。

为此,针对客户的设计情况,结合相关性能规范要求,进行整体电源设计方案分析和整改。

一、原因分析:

经沟通排除参数设定错误、人为误判等情况,在客户依据标准规范要求,针对电源回路进行共模浪涌4级测试时,存在浪涌干扰时控制板出现异常现象,浪涌实验结束时异常现象同步消失。这说明系统板确实受到共模浪涌干扰。

 

 

图1 客户FTU系统电源方案

上图1为客户的FTU系统电源方案。如果按照我司常规对EMC的测试操作规范的理解,电源回路打浪涌则应用时在前端AC-DC电源模块端口进行,共模浪涌干扰的路径存在于L/N到PE的闭环路径上。

路径1:AC-DC内部L/N直接到PE;

路径2:通过L/N、AC-DC输出端、Y电容连到PE;

路径3:通过L/N、AC-DC输出端、DC-DC模块、控制板空间耦合到PE。

既然控制板受到影响,那么一定是通过路径3造成的影响。但AC-DC模块的耐压隔离分别为3000VAC和1500VDC,加上控制板与PE只能通过空间耦合,因此该问题明显无法直接判定根本原因。

进一步与客户沟通,发现标准所表明的电源回路其实包括输入、输出两部分,这与单个电源模块进行电源输入端的浪涌测试存在差异。客户就是在AC-DC电源输出端进行浪涌四级测试时,才出现的异常状况。

二、试验验证:

按照客户电压方案进行AC-DC电源输出端浪涌测试,则等同于DC-DC电源输入端浪涌测试。因为VRB-R3系列电源裸机是不具备相应的抗浪涌能力,并且其各类耐压只有1500VDC。虽然其没有PE输入端,但进行4KV的共模浪涌一定会对产品造成损伤,其共模干扰会直接对后端的控制板造成影响;尤其是当控制板与箱体的距离很近时,将形成干扰路径。经过实际模拟试验也证实以上的干扰分析。

三、整改过程:

结合干扰三要素(干扰源、传播路径、被干扰对象),干扰源即为符合标准要求的共模浪涌4级,这因素是无法进行消除和改变;被干扰对象是其控制电路无法直接参与修改;因此只能通过传播路径进行优化整改。

优化措施1:在传播路径上进行干扰信号旁路处理

如图1所示,若直接将Y电容更换为20D470K压敏电阻进行钳位,且后端DC-DC又具备一定隔离能力,客户整体实验结果确认OK。但此类系统标准规范要求AC-DC的输出端对其PE端满足2.5KVAC的隔离耐压。而残压低的热敏电阻无法满足该耐压要求,因此该优化措施不可行。客户需针对遥信端口打静电,在确保耐压测试的漏电流不超标情况下,也需要保留这Y电容。

优化措施2:在传播路径上进行信号抑制处理

如下图2所示,添加FS-A01D即为在重播路径上进行浪涌干扰抑制,同时将DC-DC电源模块更换为隔离耐压3000VDC的URF-R3系列,进一步提升干扰信号的抑制能力;在AC-DC输出的直流电压正负直接并联20D470压敏电阻,避免浪涌瞬间直流电压波动影响;同时建议客户排查其控制板是否存在外接的线路与外壳太近,需用用胶带固定避免安装时贴近外壳。

 

 

图2 优化整改的FTU系统电源方案

四、总结:

1.分析方法:首先需要精准的定位问题发生的根源——因系统标准与单电源模块的规范要求有差异,针对配网自动化的浪涌测试包括AC-DC电源输出回路。确认问题的起因之后,才能针对问题进行理论层面的猜测和实验确认。

2.方案优化:旧方案问题在于初步选择器件规格时,同样忽略了标准的差异,使得后端DC-DC模块隔离抑制能力不足,且未进行浪涌防护。新方案整改时,需要全面了解客户整体系统的相关要求,避免将浪涌问题转移为耐压问题,或静电问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭