当前位置:首页 > 电源 > 电源
[导读] O 引言开关电流技术是近年来提出的一种新的模拟信号采样、保持、处理技术。与已成熟的开关电容技术相比,开关电流技术不需要线性电容和高性能运算放大器,整个电路均由MOS

O 引言

开关电流技术是近年来提出的一种新的模拟信号采样、保持、处理技术。与已成熟的开关电容技术相比,开关电流技术不需要线性电容和高性能运算放大器,整个电路均由MOS管构成,因此可与标准数字CMOS工艺兼容,可与数字电路使用相同工艺,并集成在同一块芯片上,所以也有人称之为数字工艺的模拟技术。但是开关电流电路中存在一些非理想因素,如时钟馈通误差和传输误差,它直接影响到电路的性能。

本文详细分析了第二代开关电流存储单元存在的问题,提出了改进方法,并设计了延迟线电路。此电路可以精确地对信号进行采样并延迟任意时钟周期。解决了第二代开关电流存储单元产生的误差,利用此电路可以方便地构造各种离散时间系统函数。

1 第二代开关电流存储单元分析

第二代开关电流存储单元,在φ1(n-1)相,S1,S2闭合,S3断开,晶体管M连成二极管形式,输入电流ii与偏置电流I之和给栅源极间电容C充电。随着充电的进行,栅极电压vgs达到使M能维持整个输入电流的电平,栅极充电电流减至零,达到稳态,此时M的漏极电流为:

在φ2(n)相,S1,S2断开,S3闭合,此时输出端电流为:

Z域传输函数为:

综上可看出,晶体管M既作为输入存储管又作为输出管,输出电流i0仅在φ2相期间获得。

2 延迟线

从结果来看,由于时钟馈通误差和传输误差的存在,第二代开关电流存储单元(以下简称基本存储单元)输出波形严重失真,尤其是级联后的电路失真更加严重,无法应用到实际中,所以,设计延迟线电路。

电路原理如下:电路是一个由N+1个并联存储单元组成的阵列,且由时钟序列控制。在时钟的φ0。相,存储单元M0接收输入信号,而单元M1提供其输出。类似的,在φ1相,单元M1接收输入信号,单元M2提供其输出。这个过程一直持续到单元MN接收其输入信号,单元M0提供其输出信号为止,然后重复循环。显然,每个单元都是在其下一个输入之前一个周期,即在其前一个输出相N个周期(NT)之后,提供输出信号。如取N=1,则延迟线是一个反相单位延迟单元,或连续输入信号时,它是一个采样保持电路,此时,延迟线电路和基本存储单元相同。请注意,对于循环的N-1个时钟相,每个存储单元既不接收信号也不提供信号。在这些时刻,存储晶体管上的漏电压值变化到迫使每个偏置电流和保持在其有关存储晶体管中的电流之间匹配。给出Z域传输函数为:

用基本存储单元级联延迟N个周期,则需要2N个基本存储单元级联,并且电路的时钟馈通误差和传输误差会随着N的增加越来越严重,到最后原信号将淹没在误差信号中。延迟线电路若要实现信号延迟N个时钟周期,则需要N+1个并联存储单元组成,并且需要N+1种时序。由于这种电路结构不需要级联,所以并不会像基本存储单元级联那样使得时钟馈通误差和传输误差越来越大。但是时钟馈通误差和传输误差仍然存在,以下给出解决办法。

3 时钟馈通误差及传输误差的改善

3.1 时钟馈通误差的改善

改善时钟馈通误差可采用S2I电路。它的工作原理为:在φ1a相,Mf的栅极与基准电压Vref相连,此时Mf为Mc提供偏置电流JoMc中存储的电流为ic=I+ii。当φ1b由高电平跳变为低电平时,由于时钟馈通效应等因素造成Mc单元存储的电流中含有一个电流误差值,假设它为△ii,则Mc中存储的电流为ic=J+ii+△ii。在φ1b相期间,细存储管Mf对误差电流进行取样,由于输入电流仍然保持着输入状态,所以Mf中存储的电流为If=J+△ii。当φ1b由高电平跳变为低电平时,考虑到△ii<<J,所以可以认为Mf和Mc的漏极端子为“虚地”端,即此时Mf和Mc的漏极端电压与没有信号输入时的电压非常接近。在φ2相为高电.平期间,由φ1b的时钟馈通效应在Mf产生的误差电流为δi,则If=I+△ii+δi,由于δi是由△ii产生的,且δi<<△ii,所以输出电流io=If-Ic=-ii+δi,由于△ii已经被抵消,而δi很小,所以可以认为输出电流与输入电流相等。

3.2 传输误差的改善

传输误差产生的原因是当电路级联时,因为传输的是电流信号,要想信号完全传输到下一级,必须做到输出阻抗无穷大,但在实际中是不可能实现的,只能尽可能地增加输出阻抗。

计算出输出电阻为:

与第二代基本存储单元相比,输出电阻增大倍。结合S2I电路与调整型共源共栅结构电路的优点,构造调整型共源共栅结构S2I存储单元。

采用O.5μm CMOS工艺,level 49 CMOS模型对电路仿真,仿真参数如下:

所有NMOS衬底接地,所有PMOS衬底接电源,所有开关管宽长比均为0.5μm/O.5 μm。输入信号为振幅50μA,频率为200 kHz的正弦信号,时钟频率为5 MHz,Vref=2.4 V,VDD=5 V。表1中给出了主要晶体管仿真参数。

将原电路按照延迟线的结构连接并仿真,延迟3个时钟周期(相当于6个基本存储单元级联),仿真结果如图l所示。

4 结语

详细分析了第二代开关电流存储单元存在的缺点,提出了改进方法,并设计了可以延迟任意时钟周期的延迟线电路,仿真结果表明,该电路具有极高的精度,从而使该电路能应用于实际当中。其Z域传输函数为,在实际应用中,该电路可作为离散时间系统的基本单元电路。

由于开关电流技术具有与标准数字CMOS工艺兼容的特点,整个电路均由MOS管构成,这一技术在以后的数模混合集成电路中将有广阔的发展前景。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭