当前位置:首页 > 电源 > 数字电源
[导读]针对Motorola DSP56F805的PWM模块中不能产生高频正弦波的缺点,根据SPWM原理,由直接面积等效法,计算出对应脉冲的起始点和终点,然后编程实现,经调试发现调制出的正弦波具有良好的特性。

    针对Motorola DSP56F805PWM模块中不能产生高频正弦波的缺点,根据SPWM原理,由直接面积等效法,计算出对应脉冲的起始点和终点,然后编程实现,经调试发现调制出的正弦波具有良好的特性。
    DSP56F805是一种专门用来控制电机的微处理器,内部具有各种功能模块,例如,A/D转换模块、PWM模块、定时器模块等,为开发基于DSP的系统提供了很大便利。针对开发系统,Motorola为我们提供了相应的软件开发工具CodeWarrior及SDK,使得我们开发基于Motorola DSP的系统更加方便快捷。


1 问题的描述
    Motorola的嵌入式SDK(Software Development Kit)是一个API、库、服务、规则的集合体,它加速了DSP的开发工作。但是,它的定时器在实现小时间定时方面的准确度却不高,对实现高频正弦波(10~100kHz)有一定的难度。因此,可采用软件延时的方法来控制脉冲序列的输出,这为实现高频正弦波奠定了基础。另外,由于DSP56F805提供了PWM模块,主要用于电机控制,输出为PWM0一WM5六路输出,为电机控制提供了方便。但是该模块不能提供高频输出,在实现高频正弦波调制方面是个难点。因此,笔者没有利用PWM模块,而是采用通用I/0口作为输出。

2 脉宽的求解原理

    直接面积等效法的原现可用图1予以说明。任取正弦波中的一个小区间△t,相正弦波面积为S1,所要产的PWM脉冲面积S2与S1等。在正弦波与脉冲高度知的条件下,可计算出脉宽度ζi。从而`得到对应的开关点,计算出一个正弦波周期内所对应所有脉冲高度已知的条件,可计算出一个正弦波周期内所对应怕有脉冲序列相对应时间的位置。

    根据具体的计算公式,可利用C语言编程计算出脉冲序列中每个脉冲的相对宽度及位置,如下所示:
    main()
    {
    unsignedinti;
    float del,del2,x[20],xz[20],xl[20],xr[20],y[20];
    unsigned int xy[34];
    if(fp=fopen(“d600”,“w”)==NULL)
    {pfintff“can’t openthisfile\n”;exit(O);}
    del=3.14159/8;
    del2=3.14159/16;
    x[O]=O;
    xl[O]=O:
    for(i=1;i<17;i++)
    {
    x[i]=i*3.14159/8;
    xz[i]=x[i-1]+del2;
    y[i]=del+cos(x[i-1])一cos(x[i]);
    xl[i]=xz[il+y[i]/4;
    xr[i]=xz[i]-y[i]/4;
    xy[2*i-1]=(xT[i]-xl[i-1])*50000/6 28318;
    xy[2*i]=(xl[i]一xr[i])*50000/6.28318;
    printff“y[%d]=%f%f%f ”,i,y[i],xr[i],xl[i]);
    printf(“xy[%d=%d”,i+i-1,xy[i+i-1]);printf(“xy[%d]=%d ”,
    i+i,xy[i+i]);
    }
    for(i=l;i<9;i++)fprintf(fp,“%u,”,xy[i]);fprintf(fp,“n”);
    for(i=9;i<17;i++)fprintfp.“%u,”,xy[il);fprintf(fp,“n”):
    for(i=17;i<25;i++)fprintf(fp,“%u,”,xy[i]);fprintf(fp,“ ”);
    for(i=25;i<33;i++)fprintf(fp,“%u,”,xy[i]);fprintfffp,“n”);
    fclose(fp);
    计算结果为:
    xy[321={1562,1865,979,2425,485,2853,155,3085,39,3085,155,2853,485,2425,979,1865,1562,1259,2145,699,2639,27l,2969,39,3085,39,2969,27l,2639,699,2145,1259};
    由此便得到一周期内所对应16个脉冲序列的相对位置xy[1]~xy[31]。如果想得到所需要的频率,还需要对直接面积等效法的原理可用图1予以说明。任取正其进行相应的变换。

3 硬件电路
    采用通用输出口PB0作为脉冲输出口,然后配以简单的阻容电路进行滤波,便可实现所需的各种频率的高频正弦波。正弦波输出电路如图2所示。


4 软件设计
    根据计算出的脉冲开关时间点,通过软件延时的方法来控制每个脉冲的开关时间,以完成脉冲输出的程序。但是,如果想得到相应的频率,必须对xy[i]作相应的变换。
    以一个周期16个脉冲为例,计算出一个基准周期内各个脉冲的起停位置xy[1]~xy[31],如果需要其它频率值,可通过相应的数值变换得到。
    例如,要获得6OOHz的正弦波,作如下变换:
    for(i=0;i<33;i++)
    SinDataF2[i]=(UWord32)xy[i]*237/(10*Fs)
    其中Fs-600。
    因此,输出一个周期正弦波算法的流程图如图3所示。

    具体实现程序如下:
    void SpwmGenerate(UWordl6 FI,UWordl6 F2){
    intl;
    UWordl6j;
    UWordl6*pSinDataFlF2;
    asm(bfclr#$8101,x:(PWMA_BASE+$3))
    while(SpwmRun){
    pSinDataFlF2=pSinDataFlF2reg;
    for(i=0;i<32;i++,pSinDataFlF2++){
    for(j=1;J<*pSinDataFlF2;j++);
    asm(bfchg#$8101,x:(PWMA-BASE+$3));
    }
  }
}

5 结论
   
经过调试发现,输出正弦波有很好的特性,可以谓制出不同频率的正弦信号,在DSP的其它应用方面有一定参考价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭