当前位置:首页 > 电源 > 数字电源
[导读]结合电荷泵型LED驱动器的工作要求,从减小输出电压纹波、稳定输出电压出发,设计了一款误差放大器。该误差放大器具有较大的工作电压范围,使电荷泵型LED驱动器高效率低噪声工作。基于CHRT 0.35μm CMOS MIXEDSIGNAL TECHNOLOGY进行仿真,结果表明,在2.7~5 V工作电压范围内,开环电压增益约等于72 dB,相位裕度约等于65°,单位增益带宽约等于4.6 MHz,共模抑制比CMRR约等于113 dB,电源抑制比PSRR约等于100 dB。

0 引言
    白光LED的应用越来越广泛。一般白光LED正向导通压降约为3.4 V,典型值为3.5~3.8 V,而通常便携式设备主要供电电源的锂离子电池输出电压在2.7~5 V之间。如果用电源直接驱动白光LED,会产生白光LED发光亮度的不稳定,而且当电源电压降低到不能使LED正常发光,而电池放电还没有结束,就会影响到便携式设备的有效工作时间。所以,在便携式设备中,需要LED驱动电路,使电池在整个放电过程中都能保证LED正常发光。
    针对电荷泵LED驱动器的具体要求,设计了一款改进型误差放大器,该误差放大器在2.7~5 V的电压范围内工作,同时具有高的电源噪声抑制比和共模抑制比。

1 误差放大器的设计
1.1 电荷泵型LED驱动器
   
图1是电荷泵型LED驱动器的示意图,图中VIN是电源输入电压,VOUT为驱动器的输出电压,S1,S2,S3,S4是功率开关,CF为泵电容,COUT是LED驱动器输出电容,EA是误差放大器,VEA为误差放大器的输出电压,VFB表示电荷泵输出电压的分压信号,VREF表示精密温度补偿基准电压。电荷泵在1倍升压时,闭合S1,S2,打开S3,S4。电荷泵工作在2倍升压时,在充电阶段,闭合S1,S4,打开S2,S3;在放电阶段,打开S1,S4,闭合S2,S3,在时钟控制下不断周期性地充放电,同时在反馈控制电路的作用下,输出电压会稳定在一个预设值上,误差放大器仅在2倍升压时工作。


    误差放大器的作用就是对精密温度补偿基准电压VREF和输出分压VFB进行比较,误差放大器输出电压正比于VFB和VREF的差值,VEA输入到控制器。整个控制原理是:如果VFB<VREF,误差放大器的输出电压VEA增大,控制电路有时钟频率输出,电荷泵工作在升压状态,输出电压VOUT增大;如果VFB>VREF,误差放大器的输出电压VEA减小,控制电路没有时钟频率输出,S1,S2,S3,S4都处于打开状态,电荷泵处在空闲状态。当电路处在空闲状态时,误差放大器继续对输出电压采样,如果输出电压在负载作用下降低,输出电压能够及时得到调整,对负载变化响应迅速,纹波较小。
    据上述工作原理可以得到对误差放大器的要求:
    第一,在电池供电范围内,误差放大器要满足宽电压工作要求。电源输出电压范围在2.7~5 V之间,在整个电池电压变化范围内,误差放大器的增益,相位变化要小。
    第二,在便携式设备中,锂离子电池要同时给数字模块供电,电池的输出电压噪声较大,所以误差放大器要有较高的PSRR,同时要满足CMRR要求。根据所需指标,寻求合适的误差放大器来满足要求。
1.2 误差放大器的设计
   
图2是误差放大器的整体电路图。误差放大器的设计和实现过程中考虑到宽电压工作,高CMRR和PSRR的应用需要,采用单电源两级电压放大器的拓扑结构,它包含一级放大器A1,二级放大器A2和两个频率补偿电容,其中A1为对称全差分OTA,它将输出电压VOUT分压电压VFB和高精度温度补偿带隙基准电压VREF差值放大,使用全差分OTA是为了得到更好的频率特性。

[!--empirenews.page--]


    第一级偏置模块由M13,M14,M15组成,IBIAS是一个高精度温度补偿基准电流源,M11,M12,M15组成电流镜结构给全差分运放放大器提供电流。M1,M2是差分输入对管,以M4,M5管为负载管,放大倍数很小。电阻R1为源级负反馈电阻,用来增加运放的压摆率,并提高运放的线性度。M20~M25为输出共模反馈管,用来调节运放第一级的共模输出电平。M4,M6,M7,M8,M9,M10组成共源级放大,采用这种结构是综合考虑带宽,相位裕量和宽电压工作的需要,V2为共源光栅器件提供合适的偏置,电路对V2点的电压要求不是很高,这是因为由M20~M25组成的输出共模反馈管,能够抑制V2点的噪声干扰。
    第二级放大电路A2是把差分的双端输出转换成单端输出,这一级决定放大电路的放大倍数,同时VEA要有合适的电压摆幅,在整个工作电压范围内都能驱动负载。根据图2可以近似得出误差放大器的低频增益:
    W和L分别是晶体管的宽和长。
    对如图2所示误差放大器,主极点位于第一级放大器A1的输出点。在A点放大器有最大的输出阻抗RA和最大的电容CA。由于第二级放大器A2的输出B点和A点的输出阻抗在同一个数量级上,两个点产生的极点相距较近,为了提高电路的稳定性,通常使用密勒补偿电容C1,C2,把这两个极点分开,得到较好的相位裕度。
    由补偿前后对比可知,密勒补偿电容使两级间的主极点向原点移动,使输出极点向离开原点方向移动。在两级运算放大器电路中引入合适的补偿电容,使误差放大器的相位裕度大为增加,大大提高了系统的稳定性。

2 仿真分析
   
为了评估所设计电路的性能,对不同工作电压(2.7~5 V)下的误差放大器进行了仿真,仿真软件采用Cadence Spectre,仿真模型基于CHRT 0.35 μmCMOS MIXED SIGNAL TECHNOLOGY工艺,仿真条件为25℃下全典型模型。首先,误差放大器的增益特性如图3所示,相位特性如图4所示。

[!--empirenews.page--]


    由图3~图4可见,在2.7~5 V的工作电压下放大器的增益和相位变化很小,其增益约等于72 dB,相位裕度约等于52°。
    图5是电源电压为2.7~5 V时,误差放大器的PSRR仿真结果。
    从图5中可以看出,在2.7 V时PSRR约为93 dB,在5 V时PSRR约为106 dB。
    图6是电源电压为2.7~5 V时,误差放大器的CMRR仿真结果。


    从图6中可以看出,在2.7 V时CMRR约为114 dB,在5 V时CMRR约为113 dB。

3 结论
   
本文基于全差分对称结构,使用CHRT 0.35μm CMOS MIXED SIGNAL TECHNOLOGY工艺,设计了一款可作为LED驱动器内部使用的具有宽工作电压范围的CMOS误差放大器,新设计的误差放大器不仅降低了输出电压波纹及噪声,而且改善了稳定性,同时具有较高的PSRR,CMRR。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

智能驾驶技术快速迭代,ADAS环视系统作为车辆周边环境感知的核心模块,对图像传感器的性能提出了严苛要求。其中,噪声抑制能力直接影响系统在低光照、强干扰等极端场景下的可靠性。本文从技术原理、工程实践及未来趋势三个维度,对比...

关键字: CMOS CCD

中国上海,2025年7月29日——全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,推出工作时的电路电流可控制在业界超低水平的超小尺寸CMOS运算放大器“TLR1901GXZ”。该产品非常适用于电池或充电电池驱...

关键字: CMOS 运算放大器 可穿戴设备

太赫兹(THz)波段位于微波与红外光之间,具有独特的频谱特性,在高速通信、高分辨率成像、安全检测等领域展现出巨大的应用潜力。然而,太赫兹射频前端作为太赫兹系统的关键组成部分,其集成面临诸多挑战。砷化铟高电子迁移率晶体管(...

关键字: 太赫兹 InP HEMT CMOS

电荷泵是一种利用电容性质来进行电压升高的电路,它可以将一个低电压的直流电源转换成一个高电压的直流电源,这个高电压可以达到几百伏甚至更高。

关键字: 电荷泵

为增进大家对电荷泵的认识,本文将对电荷泵的极性设置以及电荷泵的转换效率予以介绍。

关键字: 指数 电荷泵

量子计算迈向实用化的进程,量子-经典混合芯片架构成为突破技术瓶颈的关键路径。超导量子比特虽具备高速门操作与可扩展性优势,但其运行需在毫开尔文级低温环境中维持量子态相干性;而CMOS控制电路则依赖室温环境下的成熟工艺与高集...

关键字: 量子计算 CMOS

本文介绍了一种简单小巧的解决方案,用于驱动LED来在系统通电/断电的情况下提供视觉反馈。该电路由电阻和小型芯片组成,尽管该芯片原本并非用于此目的,但它取代了传统解决方案中的众多元器件。该电路不仅独立运行且功耗低,同时具备...

关键字: 工业电源 LED驱动器 电阻
关闭