当前位置:首页 > 电源 > 数字电源
[导读]本应用笔记介绍了一种扩展扫描的方法,可以扩展MAX6954和MAX6955 LED显示驱动器的键盘扫描范围,从32键扩展到80键。 MAX6954/MAX6955是4线或2线串行接口的LED驱动器,可以控制7段、14段或16段LED或一个16x8的LED矩

本应用笔记介绍了一种扩展扫描的方法,可以扩展MAX6954和MAX6955 LED显示驱动器键盘扫描范围,从32键扩展到80键。

MAX6954/MAX6955是4线或2线串行接口的LED驱动器,可以控制7段、14段或16段LED或一个16x8的LED矩阵。驱动器还包括5个I/O扩展(GPIO)端口,以及用这些端口自动扫描32个按键、消除按键抖动的所有逻辑控制。另外一个功能选项是通过一个中断引脚通知系统处理器消除键抖。本文介绍的扩展按键扫描方案(从32键扩展到80或更多个按键)需要增添额外的二极管。

表1. MAX6954/MAX6955的标准32键连接

  P0 P1 P2 P3
LED Output O0 SW A1 SW B1 SW C1 SW D1
LED Output O1 SW A2 SW B2 SW C2 SW D2
LED Output O2 SW A3 SW B3 SW C3 SW D3
LED Output O3 SW A4 SW B4 SW C4 SW D4
LED Output O4 SW A5 SW B5 SW C5 SW D5
LED Output O5 SW A6 SW B6 SW C6 SW D6
LED Output O6 SW A7 SW B7 SW C7 SW D7
LED Output O7 SW A8 SW B8 SW C8 SW D8


图1. MAX6954/MAX6955的标准32键连接

表1图1给出了MAX6954/MAX6955的标准8键连接。键切换电路按照4 x 8矩阵(4列、8行)读取32个按键的状态。键盘阵列的8行由8个LED阴极驱动器输出(LED输出O0至LED输出O7)驱动。作为多层LED驱动的一部分,这些LED阴极驱动输出依次拉至低电平320µs (标称值)(顺序驱动LED)。这些驱动器输出分别用来拉低键开关的一端,键的另一端连接在4个输入引脚(P0至P3),这4个输入引脚从内部拉至MAX6954/MAX6955的高电平V+。按下开关时,P0、P1、P2或P3将由相应的LED输出Ox拉至低电平,MAX6954/MAX6955检测按键,并为按键提供去抖。

多个按键被同时按下时,与开关串联的二极管可以防止2个或多个LED阴极驱动输出短路。例如,同时按下SW A1和SW A2时,与按键串联的二极管可以避免LED输出O0与LED输出O1短路,因为在任何情况下至少有一个二极管为反向偏置。二极管采用的是低成本、共阳极的BAW56,SOT23封装。

MAX6954/MAX6955随时判断32个按键按下或释放的动作,器件内部仅为指示这32个按键的状态提供了寄存器。从这一点看,在MAX6954/MAX6955的设计中似乎没有办法扩展扫描电路,需要寻找一种全新的设计方案。

针对这种特殊情况,我们发掘了一种冗余情况。许多应用中只需要了解某一个按键是否被按下。通常,同时按下两个按键的情况被认为是错误的键输入,或者是进入工厂诊断模式。这种两个按键同时按下的情况是一种“冗余”情况,我们把新增按键连接成好像某一对儿键被同时按下的情况,表2图2所示电路通过组合P0、P1、P2和P3扩充了16个按键。例如,当SW AB1按下时,对于MAX6954/MAX6955而言,所表现出来的状态与SW A1和SW B1同时按下的情况相同。只要每对儿按键(如SW A1和SW B1)的物理位置不相邻,这种扩展架构即可有效工作。软件设计应保证在MAX6954/MAX6955的最小去抖周期内响应按键的/IRQ,保证每个对应于按键扫描的结果都经过适当的分析处理。如果软件对/IRQ响应较慢,将无法区分同时按下两个按键的情况(鉴别增添的按键状态)和顺序按下相同的两个按键的情况。无论是哪种情况,按键去抖寄存器0x08-0x0B将简单地显示每个键位置位。

表2. MAX6954/MAX6955扩展后的48键连接
  P0 P1 P2 P3 P0 & P1 P2 & P3
LED Output O0 SW A1 SW B1 SW C1 SW D1 SW AB1 SW CD1
LED Output O1 SW A2 SW B2 SW C2 SW D2 SW AB2 SW CD2
LED Output O2 SW A3 SW B3 SW C3 SW D3 SW AB3 SW CD3
LED Output O3 SW A4 SW B4 SW C4 SW D4 SW AB4 SW CD4
LED Output O4 SW A5 SW B5 SW C5 SW D5 SW AB5 SW CD5
LED Output O5 SW A6 SW B6 SW C6 SW D6 SW AB6 SW CD6
LED Output O6 SW A7 SW B7 SW C7 SW D7 SW AB7 SW CD7
LED Output O7 SW A8 SW B8 SW C8 SW D8 SW AB8 SW CD8

每个附加按键需要一个双二极管(如低成本、共阴极的BAV70,SOT-23封装), 按下开关时,P0和P1或P2和P3被同时拉低。


图2. MAX6954/MAX6955扩展后的48键连接 [!--empirenews.page--]

图2和表2通过组合P0、P1、P2和P3扩充了16个按键。实际上,对于P0-P3键扫描输入还存在另外四种可能的两键组合方式。如果使用了6种两键组合方式,按键数量将增加到80个,如表3所示。图3给出了6个附加按键在LED输出O0行的连接方式。每个附加按键需要一个双二极管。

表3. MAX6954/MAX6955扩展后的80键连接
  P0 P1 P2 P3 P0 & P1 P0 & P2 P0 & P3 P1 & P2 P1 & P3 P2 & P3
LED Output O0 SW A1 SW B1 SW C1 SW D1 SW AB1 SW AC1 SW AD1 SW BC1 SW BD1 SW CD1
LED Output O1 SW A2 SW B2 SW C2 SW D2 SW AB2 SW AC2 SW AD2 SW BC2 SW BD2 SW CD2
LED Output O2 SW A3 SW B3 SW C3 SW D3 SW AB3 SW AC3 SW AD3 SW BC3 SW BD3 SW CD3
LED Output O3 SW A4 SW B4 SW C4 SW D4 SW AB4 SW AC4 SW AD4 SW BC4 SW BD4 SW CD4
LED Output O4 SW A5 SW B5 SW C5 SW D5 SW AB5 SW AC5 SW AD5 SW BC5 SW BD5 SW CD5
LED Output O5 SW A6 SW B6 SW C6 SW D6 SW AB6 SW AC6 SW AD6 SW BC6 SW BD6 SW CD6
LED Output O6 SW A7 SW B7 SW C7 SW D7 SW AB7 SW AC7 SW AD7 SW BC7 SW BD7 SW CD7
LED Output O7 SW A8 SW B8 SW C8 SW D8 SW AB8 SW AC8 SW AD8 SW BC8 SW BD8 SW CD8


图3. MAX6954/MAX6955扩展后的80键连接

为什么仅将“同时按下双键”作为判断附加按键的途径呢?3键和4键组合可用来替代双键按下的情况,表4给出了这种附加配置。需要注意的是,4-3组合键每组需要三个二极管,四组键需要4倍数量的二极管。

表4. 3键和4键连接
  P0 & P1 & P3 P0 & P1 & P4 P0 & P2 & P3 P1 & P2 & P4 P0 & P1 & P2 &P3
LED Output O0 SW ABC1 SW ABD1 SW ACD1 SW BCD1 SW ABCD1
LED Output O1 SW ABC2 SW ABD2 SW ACD2 SW BCD2 SW ABCD2
LED Output O2 SW ABC3 SW ABD3 SW ACD3 SW BCD3 SW ABCD3
LED Output O3 SW ABC4 SW ABD4 SW ACD4 SW BCD4 SW ABCD4
LED Output O4 SW ABC5 SW ABD5 SW ACD5 SW BCD5 SW ABCD5
LED Output O5 SW ABC6 SW ABD6 SW ACD6 SW BCD6 SW ABCD6
LED Output O6 SW ABC7 SW ABD7 SW ACD7 SW BCD7 SW ABCD7
LED Output O7 SW ABC8 SW ABD8 SW ACD8 SW BCD8 SW ABCD8

排除3键和4键连接的一个最好理由是它们需要更多的二极管。如果应用中所需按键只是略高于32键的限制,则可首先选择本文推荐的方案。只是因为某些偶然因素,让用户找寻3键和4键的方案也是不可取的。

值得注意的是:每个扩充按键的连接方式模拟的是多个按键同时按下的情况,这些按键连接在同一LED阴极驱动器输出端(LED输出O0至LED输出O7)。采用这种连接方式,相关组合的按键总是在同一时间扫描或去抖。如果新增按键所模拟的同时按下的按键由不同的LED阴极驱动输出扫描,这种工作方式将是不可靠的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭