当前位置:首页 > 电源 > 数字电源
[导读]芯片电路的功耗主要来自开关的动态功耗和漏电的静态功耗。动态功耗主要是电容的充放电(包括网络电容和输入负载)以及P/N MOS同时打开形成的瞬间短路电流。静态功耗主要是扩散区与衬底形成二极管的反偏电流和关断晶体管

芯片电路的功耗主要来自开关的动态功耗和漏电的静态功耗。动态功耗主要是电容的充放电(包括网络电容和输入负载)以及P/N MOS同时打开形成的瞬间短路电流。静态功耗主要是扩散区与衬底形成二极管的反偏电流和关断晶体管中通过栅氧的电流。工作时序及软件算法设计有缺陷,会降低系统工作效率、延长工作时间,也会直接增加系统能量的消耗。本文将具体阐述低功耗设计理念在基于MSP430和MFRC522的非接触式读写器上的应用与实现。

  模块电路设计

  系统选用MSP430F413单片机和MFRC522射频芯片。为简化系统结构,本系统仅由低电压报警单元、MCU单元、射频收发单元、天线、红外发射接收以及外围信号组成。

  本系统选用的是SPI接口方式,其连接图如图1所示。

  

 

  图1 MCU与射频接口及下载接口图

  MSP430选用JTAG接口下载仿真程序。为了进一步减少功耗,在系统处于休眠模式时可通过指令关闭SPI接口和MCU中无用的端口。

  射频卡读写器采用电感耦合式天线,主要用于产生磁通量,而磁通量用于向射频卡提供电源并在读卡器与射频卡之间传输信息。当一个RFID系统正常工作时所需的磁感应强度B一定时,安培匝数NI由环形天线的边长a以及标签和读写器天线的距离x来共同决定。其关系式为:

  

 

  电感耦合式天线的特征值主要有品质因数(Q)和谐振频率。一般而言,Q一方面衡量能量的传输效率,另一方面也衡量频率的选择性。对于并联谐振回路,Q可以定义为:

  Q=2πfRC=R/(2πfL)(f在本系统中为13.56MHz) (2)

  式中:f为谐振频率;R为负载电阻;L为回路电感;C为回路电容。Q值越高,天线的输出能量越高,然而太高的Q值会干扰读写器的带通特性,从而无法遵从协议标准。一般来说,Q=20时,整个系统的带通特性与带宽都比较好。RFID系统中的品质因数一般在10~30内取值,最大不要超过60。

  MFRC522从TX1和TX2引脚发射的信号是已调制的13.56MHz载波信号,辅以多个无源器件实现匹配和滤波功能,以直接驱动天线。其匹配电路和信号接收电路如图2所示。

  

 

  图2 天线匹配电路

  红外发射接收电路部分的设计目的是为了节省电源开支,当系统处于休眠模式时停止发射无线电波,可外加一个红外对管来检测是否有卡进入天线范围。当红外接收管接收到外界有卡时立即进入中断,跳出休眠模式,对外发射无线电波,并进行相关的操作。这种通过指令间断打开红外发射管检测是否有卡再进入中断唤醒CPU和打开天线的方法缩短了天线和红外管的电流消耗,从而节省了功耗。

   [!--empirenews.page--]软件设计

 

  CPU的运行时间对系统的功耗影响很大,所以应尽可能缩短其工作时间,使系统较长时间处于休眠或低功耗模式。当系统上电完成初始化操作后立即进入休眠模式,只有当红外接收管接收到信号时产生中断才打开天线进入工作模式。其中断服务程序如下:

  #pragma vector=PORT2 _VECTOR__interrupt void Port_2(void)

  { LPM3_EXIT; //退出休眠

  PcdAntennaOn(); //开启天线

  PcdReset(); //RC522复位

  P1OUT = 0xFF; //打开SPI接口

  station=1; //转入工作模式

  P2OUT|=BIT6; //LED亮

  P2IFG&= ~(BIT7); //清除标记}

  图3是程序运行的流程图。

  

 

  图3是程序运行的流程图。

  MSP430有五种低功耗模式,本系统采用的是LPM_3,此时DC发生器的DC电流被关闭,只有晶振活动。用晶振做系统主时钟和定时器时钟源,对红外接收管脚中断使能定义,使红外发射管每隔0.24s发射一个0.03ms的脉冲,间断地检测在天线范围内是否有卡,有卡时红外接收管产生中断进入中断服务程序。这样让I/O口间歇运行既不影响正常读卡也能节省电能。

  尽量减少CPU的运算量,将一些运算的结果预先算好,放在Flash里,用查表的方式代替实时计算,需要运算时最好使用分数运算,尽量避免浮点数运算。定义变量时,尽量使用字符型变量。减少CPU的运算量可以有效降低CPU的功耗。

  总结

  本文利用MSP430单片机的中断、定时、运算等功能,借助于软件优势,及MFRC522的低电压,小体积等特点,使读卡器读卡距离为0~60mm,休眠模式的电流<10μA,工作模式时电流约为150mA,延长了电池的寿命,增加了系统可靠运行的时间。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭