当前位置:首页 > 电源 > 数字电源
[导读]视频图像采集的方法一般可以分为:自动图像采集和基于处理的图像采集。前者采用专用图像采集芯片,自动完成图像的采集、帧存储器地址生成以及图像数据的刷新;除了要对采集模式进行设定外,主处理器不参与采集过程。

视频图像采集的方法一般可以分为:自动图像采集和基于处理的图像采集。前者采用专用图像采集芯片,自动完成图像的采集、帧存储器地址生成以及图像数据的刷新;除了要对采集模式进行设定外,主处理器不参与采集过程。后者采用通用视频A/D转换器实现图像的采集,不能完成图像的自动采集,整个采集过程在CPU的控制下完成,由CPU启动A/D转换,将数据存入帧存储器。其特点是数据采集占用CPU的时间,对处理器的速度要求高,但电路简单、成本低、易于实现,能够满足某些图像采集系统的需要。下面以TI公司的TMS320VC5402(以下简称C5402)DSP为例,介绍基于数据信号处理器(DSP)的视频图像采集电路和采集方法。

  C5402是TI公司C54x系列定点DSP芯片中的新产品它集中了此系列早期产品的优点,并提供了许多新的功能,开发和使用更加方便。C5402具有灵活的指令系统和操作性能,它可选择助记符指令或算术指令作为编程指令,同时支持汇编语言和C语言的单独或混合编程。C5402采用改进的Harvanl处理结构,指令流水线操作。计算和处理速度很高,系统单指令周期可达到10ns。在片内提供16k的RAM用作程序和数据存储,其最大可扩展寻址空间为1M字节。C5402提供的McBSP串口和DAM数据传送方式极大地方便它在通信领域的应用和开发。C5402由于其高性能价格而成为当前语言和静态图象处理和主流产品。

  1 电路原理

  采集电路如图1所示,由视频缓冲器、视频A/D转换器和视频同步分离电路等组成。

  1.1 视频缓冲器

  来自摄像机的标准黑白全电视信号的幅度峰-峰值为1V,要送往A/D转换器和行、场同步分离电路,而A/D转换器的满量程为2V,因此,视频缓冲器要对全电视信号进行阻抗匹配和电压放大,并能对全电视信号进行黑电平调整。图1中,U8构成视频缓冲器,增益为+2;调整电阻W1可以调整输出信号的直流电平;R16是输入匹配电阻,阻值大小由信号源决定,本电路中为75Ω。

  1.2 A/D转换器

  TLC5510是美国TI公司生产的新型模数转换器件(ADC),它是一种采用CMOS工艺制造的8位高阻抗并行A/D芯片,能提供的最小采样率为20MSPS。由于TLC5510采用了半闪速结构及CMOS工艺,因而大大减少了器件中比较器的数量,而且在高速转换的同时能够保持较低的功耗。在推荐工作条件下,TLC5510的功耗仅为130mW。由于TLC5510不仅具有高速的A/D转换功能,而且还带有内部采样保持电路,从而大大简化了外围电路的设计;同时,由于其内部带有了标准分压电阻,因而可以从+5V的电源获得2V满刻度的基准电压。TLC5510可应用于数字TV、医学图像、视频会议、高速数据转换以及QAM解调器等方面。

  TLC5510的参考电压可由其内部的3个电阻R1、Rref、R2设定,如图2所示。按图2连接,将参考低电压设定为0.6V,参考高电压设定为2.6V,电阻Rref上的2V压降即为满足程电压。当输入电压为0.6V时,A/D转换的输出数据为0;当输出电压为2.6V时,A/D转换的输出数据为255。

  TLC5510有1个转换时钟输入端(CLK)和1个片选端(OE)。CLK的下降沿启动A/D转换,1次A/D转换需要2.5个CLK周期,即第1个CLK的下降沿启动A/D转换后,要等第3个CLK的上升沿出现时,第1个A/D转换数据才会准备好。当片选信号(OE)为低电平时,A/D转换数据输出到外部数据总线上,供DSP读取。

  1.3 采集电路的DSP的连接

  采集电路与C5402的连接如图3所示。其中,U19是16位宽度的高速总线收发器,并具有电平转换的功能,将5V的奇偶场信号、复位同步信号和A/D转换器输出的数字信号转换为C5402能接受的3.3V信号。

  仔细分析了TLC5510的工作原理和C5402的读/写时序后,没有将TLC5510作为C5402的扩展I/O口,而是将TLC5510作C5402的一个扩展的外部存储单元。用该单元的读选通信号(ADR)与TLC5510的CLK和OE相连(如图3所示),这样C5402读TLC5510时,1条读数指令完成2个操作:启动A/D转换并读取A/D转换数据。不过当前的A/D转换结果要等到第4次读该端口时才能得到,A/D转换的时序如图4所示。

  1.4 同步分离电路

  同步分离电路采用LM1881。该器件能接收PAL制、NTSC制和SECAM制的全电视信号,输出复合同步信号、垂直同步信号、奇偶场信号和色同步旗形脉冲信号。C5402根据奇、偶场信号找到一场图像的开始,做好采集图像数据的准备。当复合同步信号到来时,C5402响应行中断(INT0),连续采集一行图像数据。

  2 图像采集

  压缩卡的图像采集是由C5402直接完成的。初始化结束后,C5402按缺省模式或主机命令的求确定图像的大小和采集速率等参数,然后根据奇、偶场信号和复合同步脉冲信号来采集图像数据。

  2.1 采集流程

  采集流程可分为以下几个步骤:

  ①等待场开始。

  ②当场开始信号到来时,C5402进入场处理子程序,开放行中断做好采集一场数据的准备。根据奇、偶场信号可以决定是采集奇场图像还是采集偶场图像。

  ③当复俣同步信号到来时,C5402进入中断服务子程序,并将图像数据存入扩展的数据存储器中。当一场或一帧图像各行数据都采集完毕后,关闭中断。

  2.2 行、场处理

  DSP接收到场开始信号后进入场处理子程序中。在场处理子程序中,先确定将要采集的图像的大小并设置采集、编码及发送过程中要使用的参数,然后打开行采集中断INT0,延时一定数目的行周期后退出场处理子程序,进入图像采集阶段。

  行采集中断要完成图像采集和其它一些任务。在每行图像采集之间应根据图像大小延时一段时间,以保证采集到的图像位于画面的中心。采集图像时,每隔140ns读取一个A/D转换数据,存入帧缓冲器。由于读取A/D转换结果与写帧缓冲器只用了80ns,因此可以先将图像数据减去128,再存入帧存储器,这样就进行了JPEG编码时就不要执行减128操作了,节约了时间。

  结语

  本电路成本低、容易实现、占用DSP时间少、能满足黑白电视信号的采集,在合肥工业大学DSP联合实验室研制的便携式准动视频图像压缩系统[2]中得到应用,效果良好。以本电路为基础,使用TI公司的其它高速视频A/D转换器,例如TLC5540或TLC5580,便可构成更高分辨率的视频图像采集系统。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭