当前位置:首页 > 电源 > 数字电源
[导读]摘要:为了提高能谱测量系统中放大成形部分的灵活性,采用单片机控制DAC与一级放大结合的方法,研制一种放大倍数可程控的核能谱信号放大器,使其能同时适用于X荧光仪,伽玛谱仪等核能谱测量仪器,实现0~100倍程控放

摘要:为了提高能谱测量系统中放大成形部分的灵活性,采用单片机控制DAC与一级放大结合的方法,研制一种放大倍数可程控的核能谱信号放大器,使其能同时适用于X荧光仪,伽玛谱仪等核能谱测量仪器,实现0~100倍程控放大。试验测试结果表明,设计电路完全达到设计指标要求。
关键词:核能谱信号;程控放大;滤波成形;DAC

0 引言
    核能谱放大器是能谱测量系统的重要组成部分,其性能直接影响整个能谱测量系统的分辨率。本文对传统的核能谱信号放大器的不足之处进行了改进:传统的核信号处理仪器放大倍数固定、不能灵活地变换信号放大倍数,放大电路都是针对具体的探测器设计,不具有通用性,本设计针对这一问题应用一级固定放大倍数电路结合DAC转换实现单片机可程控放大倍数,使核能谱信号放大器的放大倍数灵活变换,用户可根据需求自行设置处理;本设计采用高速的12位DAC芯片设计方案,使系统具有高集成度、低功耗等特点,提高了核信号处理时脉冲的通过率,实现了准确地对处理后信号进行程控放大,提升了仪器性能。
    基于谱仪放大器的改进空间,本文设计研制一种通用的、放大倍数可程控的核能谱信号放大器,使其能同时适用于X荧光仪,伽玛谱仪等核能谱测量仪器,具有通用性。该放大器如进一步融合信号采集(A/D转换)技术和数字信号处理(DSP)技术可构成一个功能完备的核能谱信号处理系统。

1 电路基本组成
    该电路主要包括滤波成形,程控放大,基线消除等三部分。其中滤波成形电路包括极零相消,四级巴特沃斯滤波电路,极性选择电路;程控放大电路包括一级20倍放大和12位DAC程控放大电路;基线消除电路包括去除直流电路,反相电路及电压跟随电路,结构框图如图1所示。



2 单元电路原理分析
2.1 极零相消
    信号输入端接入极零相消电路可以消除对探头信号进行微分时所引起的下击,使脉冲单调地回到基线,它改善了计数率过载和脉冲幅度叠加的效应,适用于高分辨率和高计数率的谱仪系统。图2为设计电路及实验测试信号图。

[!--empirenews.page--]
2.2 滤波成形
    电路采用两个二阶巴特沃斯滤波电路级联成四阶巴特沃斯滤波电路。用运算放大器设计的二阶低通Butterworth滤波电路,直接采用频域分析方法得到:
   
    式中:k相当于同相放大器的电压放大倍数,叫做滤波器的通带增益;Q为品质因数;ω0为特征角频率。图3为滤波成形部分电路设计原理图,图4为实验测试结果。

[!--empirenews.page--]
2.3 程控放大
    此电路采用一级100倍固定放大和DAC程控可调倍数放大两部分。一级放大采用运算放大器正反馈。DAC程控可调倍数放大部分,通过单片机控制12位高速DAC芯片,利用DAC内部精密电阻网络作为运放的反馈电阻提高了放大精度,实现1~1 000倍可程控放大。输出电压:
   
    式中D取值范围为:0~4 095。
    DAC程控放大电路如图5所示。


2.4 基线消除
    基线消除电路先将成形后的核脉冲信号输入一阶低通滤波电路取出直流分量,再与原信号相减实现去除直流分量的作用。电路实现如图6所示。



3 主要性能指标
    将本文设计的可程控核能谱信号放大电路通过制板、焊接、调试后,电源采用7~20 V的稳压电源,电路将其转为所需+5 V,-5 V,信号输入端通过极零相消电路,经调试对不同输入(X荧光和伽马射线)的频率要求改变R,C值实现极零相消其后接入的一级放大和核信号的成形滤波,输出的信号为准高斯波形,脉冲的顶部平坦,通过单片机控制DAC工作,经测试达到了可程控信号0~100倍的放大,完全实现了设计要求。图7为最终测试输出波形。



4 结论
    本文设计的可程控核能谱信号放大器经过分析设计及电路的制板、焊接和调试,经实验证明,达到了对能谱信号进行滤波成形、0~100倍程控放大的设计要求。
    该设计可通用于X荧光和伽玛能谱测量系统,实现了设计要求的通用性和灵活性,对比传统的核信号放大成形,本文设计的可程控信号放大器还具有低功耗、硬件易于小型化等优点,实现了现代核信号处理方面的设计要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭