当前位置:首页 > 电源 > 数字电源
[导读]电离子透入疗法(Iontophoresis )是一种将药物通过皮肤渗入人体体内的治疗方法。经皮肤吸收的药物是一类由电流驱动流经皮肤的带电混合物。要注入适当的剂量药物,就必须有效地控制通过皮肤的电流。可以通过采用一个自

离子透入疗法(Iontophoresis )是一种将药物通过皮肤渗入人体体内的治疗方法。经皮肤吸收的药物是一类由电流驱动流经皮肤的带电混合物。要注入适当的剂量药物,就必须有效地控制通过皮肤的电流。可以通过采用一个自动化系统来实现这一操作。

电离子透入疗法有很多好处。首先,可以对(人体)局部非常高剂量地用药,而非整体低剂量用药。其次,局部用药的副作用要少得多。通过高剂量用药,可大大提高药物的功效。要做到这一点,预先准备特殊配方的药物,这类药物与电子结合并通过流经皮肤的电流进行传送。在过去,这需要用到大量的电子元器件和一位训练有素的护士来监测电流,并且给药点滴装置需要具有必要的安全功能来保护病人。然而,随着近年来技术的进步、开关式电源设计和成本有效、高性能的微控制器MCU)的出现,使得低成本或一次性输液器成为可能。本文介绍了如何利用带混合信号功能的低成本8位PIC12F683微控制器和一些现货供应的元器件 来实现这一概念设计。

实现

要通过皮肤注入药物,注射装置必须生产生足够的电压来驱动电流,以便在要求的给药时间段内提供 特定的药剂注入速率。(设计)的目的在于控制通经皮肤的电流,但为了安全起见,应确保设备不会产生过高的电压。否则,注射装置可能会脱离患者,击穿电流通 道。在这种情况下,控制电路将尝试提高电压以维持当前的流速,(将注射装置)重新接上可能会使患者感觉到不适。

使用升压调节器将来自低电压电池的电压逐步提高至足够的水平,以便让达到要求的电流流经皮肤。选用间断性升压稳压器拓扑结构,因为它不要求处理器在特定时间提供脉冲,允许通过电感的电流下降至零。这样就可以简化软件的开发。

MCU 配置有一个外部异步复位引脚(主复位/ MCLR)。降低该引脚的电平将复位和唤醒处在低功耗关断状态(休眠)的微控制器。一旦完成对某次输液,该软件马上进入睡眠状态。与MCLR引脚相连的按 钮将线路置低电平,将其从休眠模式中唤醒。当设备从睡眠中醒来后,开始执行来自复位向量的代码(程序存储器中的0x0000),其它复位(包括上电)代码 也相同。需要管理的输液量被存储在内部EEPROM,这主要取决于执行情况和所管理的药物。该电路使用两节AA碱性电池为微控制器和开关稳压器供电。

软件采用微控制器的内置模拟-数字转换器(ADC)监控加到皮肤的电压,并将其与设定阈值进行对比。如果加到皮肤的电压超出了预定值,MCU将停止开关 MOSFET,避免将电压被升太高。这一功能将输出电压限制在安全水平,使该设备不至于从(被注射者的)皮肤脱落。预定义限值由软件设置,但因为加到皮肤 的电压有可能大于MCU输入引脚所能承受的电压或者大于其ADC可以转换的电压,所以要对这一数值按比例转换。外加电压由图2中所示的电阻R1和R2换算 至微控制器的电源轨范围---0~3V。

通常,电离子透入疗法所用的电流大小会随着药物的不同而变化,并且需要依据特定药方进行确认。电流由PIC12F683的一个外部电阻R3和一个内部比较器进行控制。通过定义期望电流,范围在0.5?4毫安,比较器的阈值被设定在了代码中。

软件通过测试比较器的输出来确定电流值。如果电流超出预期值,那么微控制器不会转换MOSFET。否则,MOSFET被转换成升压,驱动更多电流通过皮肤。输出电流等于输入引脚的功率乘以转换器的效率,再除以输出电压,如以下公式所示:

输液持续的时间由一个内置的16位硬件定时器和一个16位软件定时器来控制。当达到预期剂量时,微控制器停止转换MOSFET并进入睡眠状态,再等待下一次按钮来启动。为了增加患者的舒适度,在上电顺序期间的输出电压上升速度可以调节。

1、软件流程图详细说明了这一过程。

2、从电路原理图可见设计的简洁性

在电路原理图(图2)中,Q1是主要开关晶体管。MOSFET Vds击穿和D1的击穿电压应大于电路的最大预期输出电压。当微控制器检测到输出电流低于预期大小时,它会快速地连续四次对MOSFET加脉冲以提高电压 输出。这四个脉冲将产生更大电流和加速负荷下的上升时间。或者,可用PWM驱动MOSFET,这样允许来自升压电路的更高输出。R6/C6为电流检测网 络。

由于PIC12F683体积小、成本低、配置有内部ADC、固定基准电压、集成比较器、PWM、硬件定时器和内部EEPROM,所以它被本设计选定为MCU。使用固定参考电压可省去调节器或外部参考电压,使该设计可做成一个8引脚器件以便进一步降低成本。

该设计还包含两个用于用户界面的LED,一个连接至复位部件的启动按钮。

测试结果

在测试过程中,捕捉到了如图3和4所示的波形。

采用一个10K负载时的启动波形。

采用一个20k负荷时的启动波形。

用一个1μF的陶瓷电容器作为输出电容,电压纹波如图5所示。

采用一个20K负载时的调整输出波形。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭