当前位置:首页 > 电源 > 数字电源
[导读]摘要:介绍了对数字信号的2ASK和FSK的调制的原理,软件实现流程以及硬件电路的设计,并给出了实验结果,从而证明了设计的可行性和合理性。 关键词:2ASK;FSK;调制原理 由于实际通信中不少信道都不能直接传

摘要:介绍了对数字信号的2ASK和FSK调制的原理,软件实现流程以及硬件电路的设计,并给出了实验结果,从而证明了设计的可行性和合理性。
关键词:2ASK;FSK;调制原理

    由于实际通信中不少信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使载波的这些参量随基带信号的变化而变化,即所谓载波调制。在大多数数字通信系统中,都选择正弦信号作为载波。这是因为正弦信号形式简单,便于产生及接收。数字调制信号,在二进制时有振幅键控(ASK)、移频键控(FSK)和移相键控(PSK)三种基本信号形式,同时可根据基带信号的进制不同分为二进制和多进制(M进制)。多进制数字调制与二进制相比,其频谱利用率更高。本文研究了基于Blackfin533的2ASK、2FSK以及8FSK的调制实现方法,并给出了其实验结果。

1 二进制振幅键控(2ASK)信号的原理及调制实现
    振幅键控是正弦载波的幅度随数字基带信号而变化的数字涮制。当数字基带信号为二进制时,则为二进制幅度键控(2ASK)。设发送的二进制符号序列是:

    利用VC++编程实现2ASK信号的流程图如图1所示。

[!--empirenews.page--]

2 2FSK、8FSK信号的原理及调制实现
    FSK是数字通信中使用较为广泛的一种方式。若正弦载波的频率随二进制基带信号在f1和f2两个频率点间发生变化,则产生二进制移频键控信号(2FSK)。若二进制基带信号的1符号对应于载波频率f1,0符号对应于载波频率f2,则二进制移频键控信号的时域表达式为
[!--empirenews.page--]
    利用VC++编程实现2FSK信号的流程图如图2所示。


    多进制数字频率调制系统(MFSK)基本上是二进制数字频率键控方式的推广。其时域表达式为:
   
    式中,△ωt(m=0,1,…,M-1)是与an对应的载波角频率偏移。在实际应用中,我们通常定义△ω1=△ω2=…=△ωm-1=△ω,则时域表达式可以写为:
   
    利用VC++编程实现8FSK信号的流程与2FSK类似,不同的只是增加了串并转换的模块和其它六种载波频率,所以这里对于8FSK的调制流程图就不再详细介绍了。

3 系统硬件和软件设计
    信号产生器系统分为两大模块,微型计算机模块和波形产生模块。其中微型计算机为通用计算机,波形发生模块为设计的信号发生板卡。通用计算机可以产生数字调制信号和噪声干扰信号,然后将数据通过USB接口传送到信号发生板卡。信号发生板卡将通过波形产生控制器循环取出波形存储器和噪声存储器中的数据,最后通过DAC产生连续的数字通信信号波形。
     如下图3所示的系统硬件设计框图。信号波形产生的核心是DSP1,它扩展了USB接口、大容量存储器、高速DAC和程序存储器等。DSP1完成通信信号产生、DSP2完成噪声(干扰)信号产生。两个DSP共享程序存储器,DSP1作为主控DSP。DSP2的程序通过SPI(高速同步串行口)方式加载,其主机是DSP1。

[!--empirenews.page--]
    在波形产生时,DSP1接收PC微机通过USB接口传送的波形数据包。将数据包中的通信波形数据通过DMA方式传送到通信和通信信号环境波形数据存储器。同时将信噪比参数和噪声数据(此处噪声数据为白噪声)通过SPI接口传送到DSP2,DSP2将噪声数据存储到噪声/干扰数据存储器。其中通信数据的高位(D15)为基带码流数据,用于恢复基带码流测试数据。
    系统中所有波形参数的采样频率为10MHz,数据容量为16M×16位,可存储1.5秒钟的波形数据。数据有效位数为14位。
    DSP1将存储的波形数据从存储器中循环读出,以DMA方式传送给DAC1,产生通信信号。DSP2利用程序产生随机地址,将存储的噪声波形数据从存储器中读出,并且根据信噪比进行幅度加权,然后传送给DAC2,产生噪声信号。两个DAC的位数是14位,并且设置为4倍插值方式,即DAC输入数据率为4MBPS,输出转换速率为16MBPS。DAC转换需要的时钟利用BF533的定时器产生,DAC连接在BF533数据总线的低14位D13~D0。基带码流通过DSP1的PFX引脚输出,经过驱动输出基带波形。DAC输出经过带通滤波器滤波,AD8054缓冲放大,并且将信号和噪声合成,生成需要产生的信号波形。


    系统中的微型计算机采用Windows2000/XP操作系统,其USB驱动程序由DDK开发,控制应用程序可通过VS2005进行开发。系统的软件设计主要是针对BF533进行编程。Blackfin系列DSP在软件方面支持C语言和汇编语言,同时支持二者的混合编程。过程序流程如图4所示。

4 实验输出波形
    通过双踪示波器来观察调制出的通信信号波形,在参数设置时选择0、1码元类型,以便对信号进行稳定的观察。这里我们给出了2ASK、2FSK的观察波形,如图5所示。南丁8FSK信号用示波器不能清晰的分辨,这里就不加以分析了由上图可以看出,信号调制的波形图基本符合理论与预期的目标结果,从而证明了此设计的可行性和合理性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭