当前位置:首页 > 电源 > 数字电源
[导读]连接/参考器件 AD7176-2 24位、250 kSPS Σ-Δ型ADC,建立时间20 μsAD8475 精密、可选增益、全差分漏斗放大器ADR445 5 V超低噪声LDO XFET基准电压源 评估和设

连接/参考器件

 

AD7176-2 24位、250 kSPS Σ-Δ型ADC,建立时间20 μs

AD8475 精密、可选增益、全差分漏斗放大器

ADR445 5 V超低噪声LDO XFET基准电压源

 

评估和设计支持

 

电路评估板

 

AD7176-2电路评估板(EVAL-AD7176-2SDZ)

系统演示平台(EVAL-SDP-CB1Z)

 

设计和集成文件

 

原理图、布局文件、物料清单

 

电路功能与优势

 

对工业电平信号进行采样时,必须提供快速高分辨率转换信息。通常,当采样速率达到500 kSPS时,模数转换器(ADC)具有的最高分辨率为14位至18位。图1所示电路是一款单电源系统,针对工业电平信号采样进行优化,集成一个24位、250 kSPS Σ-Δ型ADC。两个差分通道或四个伪差分通道中的每一个都能够以17.2位无噪声代码分辨率、最高50 kSPS的速率对其进行扫描。

 

本电路利用创新型差分放大器和内置激光调整电阻执行衰减和电平转换,通过具有低电源电压的精密ADC可以解决获取±5 V、±10 V和0 V至10 V的标准工业电平信号并进行数字化处理的问题。本电路的应用包括过程控制(PLC/DCS模块)、医疗以及科学多通道仪器和色谱仪。

 

 

 


 

 

图1. 工业信号用高精度、24位ADC驱动器(原理示意图:未显示所有连接和去耦)

 

电路描述

 

工业电平信号施加于AD8475精密差分漏斗放大器上,该器件可将输入信号衰减0.8倍或0.4倍。它集成经过调整并匹配的精密电阻,用来控制衰减。当AD8475使用5 V单电源并且增益设置为0.4时,此电阻支持最高±12.5 V的单端或差分输入。器件提供最高±15 V的输入过压保护。

 

当输入信号(增益为0.4)处于±10 V单端或差分输入范围内时,AD8475和AD7176-2器件组合能够保持线性度,如图4中的测量INL限值所示;图中,测量端点分别为?10 V和+10 V。此时,AD8475的输出摆幅介于0.5 V和4.5 V之间。

 

通过对VOCM引脚施加所需的共模电压,便可设置共模输出。图1所示电路中,通过将AD7176-2 ADC的2.5 V REFOUT电压施加于AD8475的VOCM引脚,完成共模电压的设置。

AD8475提供衰减和电平转换,以便驱动AD7176-2的采样电容输入;功耗仅为3.2 mA。

AD8475放大器的输出连接到RC滤波器网络,可提供差分和共模噪声滤波以及AD7176-2输入采样电容所需的动态充电。该网络还可隔离放大器输出,使其不受动态开关电容输入的反冲影响。共模带宽(RIN、C1)为59 MHz。差模带宽(2 × RIN、0.5C1 + C3)为9.8 MHz

 

还可设置AD8475,使其接受单端信号。将-IN 0.4×输入接地,并对+IN 0.4×输入施加单端信号。

 

AD7176-2 24位、Σ-Δ ADC对AD8475的输出进行采样,并转换为数字输出。转换速率和数字滤波器特性可针对5 SPS至250 kSPS的输出数据速率进行调节。

 

AD7176-2可配置为两个全差分输入或四个伪差分输入。ADC支持最高50 kSPS的通道扫描速率。AD7176-2的无噪声位性能为17.2位(250 kSPS);20.8位(1 kSPS);以及21.7位(50 SPS)。

 

图2表示输入接地时的总系统有效均方根噪声。数据速率为250 kSPS时,有效均方根噪声约为30 μV rms。请注意,满量程时,本电路的线性度在±10 V输入下达到最佳状态,计算时满量程输入设为20 V p-p。

 

 

 


 

 

图2. 均方根输出噪声与输出数据速率的关系

 

有效分辨率以位数表示,折合到20 V满量程输入范围的计算公式为:

 

有效分辨率 = log2(FSR/均方根噪声)

 

有效分辨率 = log2(20 V/30 μV) = 19.3位

 

 


 

 

图3. 有效分辨率(均方根位数)与输出数据速率的关系

先将均方根噪声转换为峰峰值噪声近似值(均方根噪声乘以系数6.6),有效分辨率便可转换为无噪声代码分辨率。计算结果约为2.7位,随后将其从有效分辨率中扣除,以得到无噪声代码分辨率。如本例所示,经计算后,19.3位有效分辨率相当于16.6位无噪声代码分辨率。这一结果与AD7176-2在无缓冲短路输入情况下,输出数据速率为250 kSPS时的17.2位无噪声位规格相比,大约有0.3位的差异。这是由于本例仅采用±10 V作为满量程范围,而非±12.5 V的最大值。

 

图4显示采用端点法获得的系统积分非线性,用满量程(FSR)的ppm表示。

 

 


 

 

图4. 积分非线性(INL,以FSR的ppm表示)与输入电压的关系 [!--empirenews.page--]

 

虽然本电路主要设计用于处理直流输入,但它也能转换低频交流输入。其失真性能随模拟输入幅度的变化而改变。图5和图6分别显示-1 dBFS和-6 dBFS以及1 kHz正弦波情况下的性能。由Audio Precision 2700系列音频源产生的正弦波直接输入AD8475。

 

 

 


 

 

图5. AD8475至AD7176-2的FFT性能(1 kHz、-1 dBFS输入音、16384点FFT)

 

 

 


 

 

图6. AD8475至AD7176-2的FFT性能(1 kHz、-6 dBFS输入音、16384点FFT)

 

若要获得最佳的高分辨率系统性能,则出色的印刷电路板(PCB)布局、接地以及去耦技巧是必不可少的。详细信息,请参考指南MT-031、指南MT-101、AD8475数据手册及AD7176-2数据手册。欲查看完整原理图和印刷电路板的布局,请参见CN-0310设计支持包。

常见变化

 

图1所示电路中,AD8475所选增益为0.4。若选择了0.8增益,则满量程范围将从±10 V下降到±5 V,导致灵敏度翻倍。

 

使用额外AD8475器件的第二条通道可连接AD7176-2的AN0/AN1引脚。

ADR445基准电压源可替换为具有300 mV压差的ADR4550基准电压源。

 

电路评估与测试

 

设备要求

 

需要使用以下设备:

 

EVAL-AD7176-2SDZ评估板和软件

系统演示平台(EVAL-SDP-CB1Z)

精密直流电压源

Audio Precision 2700系列(交流输入)

PC(Windows 32位或64位)

7 V至9 V直流电源或壁式电源

 

软件安装

 

AD7176-2评估套件包括一张光盘,其中含有自安装软件。该软件兼容Windows XP (SP2)、Windows Vista和Windows 7(32位或64位)。如果安装文件未自动运行,可以运行光盘中的setup.exe文件。

 

请先安装评估软件,再将评估板和SDP板连接到PC的USB端口,确保PC能够正确识别评估系统。

 

完成光盘安装后,将EVAL-SDP-CB1Z(通过连接器A或连接器B)连接到EVAL-AD7176-2SDZ,然后利用附送的电缆将EVAL-SDP-CB1Z连接到PC的USB端口。

 

检测到评估系统后,确认出现的所有对话框。这样就完成了安装。

 

设置与测试

 

有关使用软件和运行测试的完整详细信息,请参考UG-478用户指南。

 

图7显示测试设置的功能框图。

 

若要测试图1中的电路,硬件需要经过下文所述的微小改变:

 

信号从位于J8端子板上的A2和A3输入端输入到AD8475。

改变连接到位置C的SL9和SL10焊点,可将来自J8的A2和A3信号路由至AD8475输入端。

安装10 Ω (0603)阻值的R64和R74,将AD8475输出连接至AD7176-2的AIN2和AIN3引脚。

移除板卡底部的R110和R120电阻(如UG-478用户指南中所示)。

 

 

 


 

 

图7. 测试设置功能框图

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭