当前位置:首页 > 电源 > 数字电源
[导读]FPGA在信号采集中时钟频率高,内部延时小,控制逻辑由硬件完成,同时可以集成外围控制、译码和接口电路,具有速度快、组织灵活等优势。在需要测量较大面积的动态变化面形并采集大量光栅尺信号时,可以使用FPGA数据采集系统对光栅信号进行采集。在保证采样精度的前提下,为了降低成本和系统复杂度,可以在采集系统中使用多路选择技术。本文提出了一种基于FPGA的多路光栅信号采集方案,该方案使用I/O口相对较少的低端FPGA,配合多路选择开关,通过内部处理,实现了多路光栅信号的采集,结果表明,该方案成本低廉且能满足精度的要求

0 引言

光栅传感器作为精密机械量测量的有效工具在线位移、角位移、速度、加速度等工程的测量上得到了广泛应用。在长度测量中,光栅微位移传感器可以达到μm级的测量精度,同时可以动态采集长度的变化,从而可以精确地算出运动速度甚至加速度。在曲面测量中,相比于传统的三坐标机、轮廓仪,光栅传感器也具有可以动态检测面形变化,精度高,可以实时输出面形数据等优势。

多路选择技术的数据采集中得到了广泛应用,在一些分布式系统当中,使用多路选择技术可以减少I/O口使用数量,提高系统集成度。具体来说,使用多路选择开关对多路信号进行选通处理,将多路选择开关的输出端连接采集芯片的I/O口,使采集芯片对各路信号进行轮番采样,但轮番采样使得原始波形的采集离散化,即在芯片对采得的离散信号进行处理前,需要对采得的波形进行处理。

1 系统整体方案

系统选用了60 支高精度光栅传感器(精度为0.5 μm),按环带状排布,以测量圆状动态面形变化。

实际测量时,60个光栅微位移传感器安放在测量台上,待测面形与各传感器接触,待测面形变化时,各路光栅传感器会产生相应的位移,将面形各采集点处的数据变化采集起来,通过一定的插值算法还原面形的动态变化。

通常情况下,采集系统选用FPGA作为光栅信号的采集芯片。因系统涉及的信号路数较多,单片低端FPGA 很难满足信号采集的要求,故需要多片FPGA 并行工作,最后用一片DSP芯片或单片机对多片FPGA进行轮番寻址取值,再将各传感器的数据传送给上位机,如图1所示。系统结构设计较为复杂,成本也较高。

 

 

本文提出了一种基于多路选择技术的多路信号采集方案,针对多路信号无法同时被单芯片采集的问题,采用串、并结合采样的方法,可以在满足采样精度要求的情况下,实现单FPGA上的多路信号采集,如图2所示。

 

 

每个传感器输出信号中,表示传感器移动距离的信号有两路(A、B)。4 个传感器分为一组,共有8 路信号(1A、…、4A,1B、…、4B)。将1A~4A 接双4 位多路选择开关(如74HC4052)的1Y0~1Y3,1B~4B 接多路选择开关的2Y0~2Y3.FPGA发出2位控制信号同时控制该多选芯片MUX1.即FPGA控制信号为00时,MUX1的1Z输出为1A,2Z输出为1B,此时FPGA接收到的信号为传感器1 的信号。FPGA 的控制信号进入下一个状态01时,MUX1的1Z 输出为2A,2Z 输出为2B,此时传感器2的信号被采集。依次类推,传感器4的信号之后重新返回到传感器1上。这样就形成一个循环采样的过程。

在对采样频率要求不高时,多路并行采样可以节省很多IO资源,同时精度也可以得到保证。FPGA内部用状态机可以完成多路选择的控制,如图3所示。

 

 

2 光栅信号预处理

光栅位移传感器输出为两路相位相差90°的方波信号,如图4所示,正常情况下可以通过两路波形的上升、下降沿的个数来计量位移的实际变化;并由两路信号的瞬时相位变化得出位移的移动方向。但由于本方案使用循环采样的方法,使得某路光栅信号只有14 被采集到,故需通过相关方法还原原始信号。

 

 

这里采用通过滤波引入临时信号的方法,将采集信号通过时钟延时将采样波形保持为采样值四个时钟周期,生成类似于原始信号的临时信号,如图5所示。

 

 

滤波的作用是消除毛刺等噪声对采样信号产生的影响,常规的滤波方法为通过对若干个时钟周期内信号的判断来实现。当几个时钟周期内信号的值并未发生跳转时,认为信号值为真实值,可以作为进一步处理的临时信号,如图6所示。可以看出临时信号仅仅比原始波形信号滞后了若干时间(该滞后时间所对应的时钟周期数小于串行采样数,此处串行采样数为4),这样可以基本准确地还原原始的波形,细分辨向计数等操作基于该临时信号,当信号周期远大于时钟周期,即光栅信号变化缓慢时,对采样的精度基本没有影响。

 

 

3 多路光栅信号并行采集

对8 路光栅信号按上述方法进行处理,如图7 所示。在图中所示范围内,传感器1~4产生以下信号:增加18、减少11、先减1再加14、减少13.

 

 

观察图中A、B两处的计数,如图8所示。A处传感器1~4的初始值为64,0,8,4,B处可见传感器1~4的计数值为82,-11,21,-9.与产生的脉冲信号完全符合,说明实现了正确的数据采集。

 

 

4 结论

本方案适用于低速且输入较多的数据采集装置,对于高速信号,信号周期与时钟周期相差倍数较小时,此法会造成有效信号的损失,并不适用。当信号周期远大于时钟周期时(Ts > 20Tclk ),引入的临时信号仅仅比原始信号滞后几个时钟周期(该滞后小于并行采样数乘以时钟周期),整体上可以比较好地还原初始波形。同时,临时信号还能有效消除一个时钟周期内的部分波形抖动,实现准确的低速多输入数据采集。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2024年4月17日 /美通社/ -- 在2024 F1中国站即将拉开帷幕之际,高端全合成润滑油品牌美孚1号今日举办了品牌50周年庆祝活动。三届F1年度车手总冠军马克斯•维斯塔潘也亲临现场,共同庆祝这一里程...

关键字: BSP 汽车制造 行业标准 产品系列

北京2024年4月17日 /美通社/ -- 2024年4月13日,由北京康盟慈善基金会主办的"县域诊疗,规范同行"——肿瘤诊疗学术巡讲项目首站在广州隆重召开。本次会议邀请全国多位肺癌领域专家和县域同道...

关键字: AI技术 医疗服务 BSP 互联网

海口2024年4月16日 /美通社/ -- 4月14日,在中法建交60周年之际,科学护肤先锋品牌Galenic法国科兰黎受邀入驻第四届中国国际消费品博览会(以下简称"消博会")法国馆。Galenic法...

关键字: NI IC BSP ACTIVE

上海2024年4月17日 /美通社/ -- 每年4月17日是世界血友病日。今年,世界血友病日以"认识出血性疾病,积极预防和治疗"为主题,呼吁关注所有出血性疾病,提升科学认知,提高规范化诊疗水平,让每一位出血性疾病患者享有...

关键字: VII 动力学 软件 BSP

伦敦2024年4月16日 /美通社/ -- ATFX宣布任命Siju Daniel为首席商务官。Siju在金融服务行业拥有丰富的经验和专业知识,曾在全球各地的高管职位上工作了19年以上。Siju之前担任FXCM首席商务官...

关键字: NI AN SI BSP

Bluespec支持加速器功能的RISC-V处理器将Achronix的FPGA转化为可编程SoC

关键字: RISC-V处理器 FPGA SoC

为无处不在的端侧设备插上AI的翅膀,AMD发布第二代Versal™ 自适应 SoC

关键字: AMD FPGA 自适应SoC AI 边缘计算

Pmod接口可以说是数字电路板的连接革命。随着科技的飞速发展,数字电路板间的通信与连接技术也在不断创新和进步。Pmod接口,作为一种新兴的数字接口标准,正逐渐成为数字电路板间通信的桥梁,为电子设备的连接和通信带来了革命性...

关键字: pmod接口 FPGA 数字电路板

近日举办的GTC大会把人工智能/机器学习(AI/ML)领域中的算力比拼又带到了一个新的高度,这不只是说明了通用图形处理器(GPGPU)时代的来临,而是包括GPU、FPGA和NPU等一众数据处理加速器时代的来临,就像GPU...

关键字: FPGA AI 图形处理器
关闭
关闭