当前位置:首页 > 电源 > 数字电源
[导读]  千兆网络接口具有数据传输速率快、连接方便、可以即插即用的优点,使得其应用较为广泛。随着电子技术和处理器的发展,很多应用场合的数据通信速率超过千兆网口的实际传

  千兆网络接口具有数据传输速率快、连接方便、可以即插即用的优点,使得其应用较为广泛。随着电子技术和处理器的发展,很多应用场合的数据通信速率超过千兆网口的实际传输速率。例如,在A/D采样中,需要直接存储A/D转换的采样数据,如果A/D转换位数为16位,工作在100MHz,则实际数据量为1.6Gbps。为了实现高速传输,必须采用更高传输速率的接口,例如PCIe或者RapidIO接口。但这些接口不具有即插即用功能,与很多工业既有设备不能直接连接,限制了其应用场合。

  DSP(数字信号处理器)具有较高的工作频率,其内部集成硬件网络MAC接口,外接一个物理层芯片就可以方便地实现千兆网络通信。多核DSP芯片可以连接多个千兆网口,使得其可以应用到高速数据传输场合。本文介绍一种基于多核数字信号处理器TMS320C6678的嵌入式双千兆网络接口,实现单个芯片连接两个千兆网口,这两个网口可以各自独立传输数据,也可以联合传输数据,提高了实际的数据传输速率。

  1. C6678及其结构

  TMS320C6678是TI公司多核处理器中的一款8核浮点型DSP,每个核最高工作频率可达1.25GHz,每个核可以提供40GMAC定点计算或者20GFLOP浮点计算能力,单个芯片可以提供320GMAC或者160GFLOP计算能力。TMS320C6678的片内结构如图1所示。

  TMS320C6678的每个核具有32KB的程序、32KB的数据以及512KB的2级Cache存储空间,芯片片内具有一个4MB的共享SRAM。TMS320C6678具有DDR3控制器接口,可以外接DDR3,直接寻址范围达到8GB。TMS320C6678的片内外设有RapidIO、PCIe、EMIF、SPI、I2 C总线等接口。这些接口通过片内的高速互联总线和各个处理器交互数据。

  和网络相关的片内设备如图1右下角灰色模块所示,主要包括两个对外的SGMII接口、以太交换和网络交换模块,以及用于数据管理的安全加速器和包加速器,可以快速检测数据的校验以及协议是否遵循网络标准,对于错误的数据直接丢弃,降低CPU 的负担。为了加快网络和CPU的数据交换,片内的队列管理器用于管理网络包或者网络帧的缓存、分发等功能。这些数据都采用数据包DMA读写,不需要CPU参与。

  

 

  图1 TMS320C6678内部结构图

  TMS320C6678的其他片内设备包括PLL、仿真口、信号量、电源管理和复位管理等模块。其中PLL配置CPU和外设的工作时钟;仿真口用于连接仿真器,实现对软件运行的监控;信号量实现对DSP/BIOS操作系统中信号量的控制;电源管理实现整个芯片电流电压的控制;复位管理配置启动的方式,硬复位进行全启动,软复位进行部分启动。

  2. 88E1111及其结构

  网络物理层芯片很多,一般都兼容MII、RMII以及SGMII等接口标准之一或者多个。但TMS320C6678只提供了SGMII接口,所以和TMS320C6678连接的物理层芯片必须具有SGMII接口。本文使用两片Marvell公司的88E1111 物理层芯片进行双千兆网络的连接。88E1111的片内结构如图2所示。

  

 

  图2 88E1111内部结构图

  网络RJ45接口发送过来的带有调制数据的模拟信号经过A/D转换变成数字信号,然后依次经过均衡、整形滤波和译码后由接收单元传输到MAC芯片,实现数据的接收。MAC发送的数据经过整形滤波后由D/A转换成模拟信号发送到RJ45接口。为了降低误码率,88E1111内部具有锁相环(PLL)、自动增益控制(AGC)、时序/相位控制、回音抵消等模块,这些模块都是为了提高数据传输的可靠性,在不同环境或者不同外接设备下,都可以高速可靠地通信。图2中的LED控制模块实现数据传输时的灯光显示,MDIO模块实现链接建立和状态监测,时钟模块提供工作时钟。

  3. 硬件设计

  硬件设计主要包括TMS320C6678和两个88E1111的接口、88E1111和RJ45的接口、88E1111的硬件配置设计等几个部分。

  TMS320C6678的网络模块结构如图3所示。片内集成了一个3口的以太交换机,负责将两个千兆网口的数据交换到主机,同时提供交换中断到主机,主机通过中断可以实时接收和发送数据。主机通过总线配置或者监控外部的物理层芯片,配置和监控数据通过MDIO接口连接到物理层芯片。

  

 

  图3 TMS320C6678网络模块结构

  图4 TMS320C6678和88E1111的接口TMS320C6678和两片88E1111的接口电路如图4所示。TMS320C6678 采用SGMII(Serial Gigabit Media Independent Interface)接口,兼容10/100/1000M 工作方式。SGMII为串行数据收发方式,具有较少的引脚连接。从图4中可以看出,实际上只有两对收发的差分线,分别连接到对应的88E1111引脚上。读写时钟隐含在数据上传输,由硬件自动识别,无须软件参与。[!--empirenews.page--]

  

 

  图4 TMS320C6678和88E1111的接口

  MDIO和MDCLK 为TMS320C6678内部MDIO 模块的数据和时钟,用于TMS320C6678和88E1111建立连接,TMS320C6678可以通过该接口配置88E1111,或者读取88E1111的信息。由于88E1111的MDIO模块接口电平为2.5V,而TMS320C6678的MDIO模块接口电平采用1.8V电压,所以两者之间需要增加电压转换芯片,本设计采用PCA9306实现电压转换,接口电路如图5所示。

  

 

  图5 MDIO接口的电压转换电路

  需要注意的是,由于存在两个88E111芯片,MDIO和MDCLK引脚直接连接到两个芯片上,MDIO可以最多控制32个物理层芯片,物理层芯片地址分别为1~32.88E1111的地址配置如图6所示。

  

 

  图6 88E1111的硬件配置

  表1为对应的配置信息,根据图6和表1,可以看出88E111的地址分别为4和8。

  表1 配置引脚设置

  

 

  4. 软件设计

  系统软件设计包括硬件初始化、网络配置以及数据通信流程等。TMS320C6678复位后的工作流程如图7所示。首先配置第一个网口,记录其状态后配置第二个网口。只要两个网口有一个配置成功,将配置TMS320C6678的EMAC模块,为成功配置的网口设置收发缓冲和收发任务。这些配置好后,就可以实现网络的数据收发。需要注意的是,在用户应用程序中,需要考虑到网口配置失败的情况。例如,用户应用程序通过双网口实时传输1.2Gbps的数据,如果一个网口配置失败,则应用程序应有相应的机制将实时传输速率降低到0.8Gbps以下(单网口实际传输速率可能低于0.8Gbps)。本文硬件系统在没有其他任务开销情况下,实测可以传输1.5Gbps的数据(传输过程中不考虑错误,不进行重发)。

  

 

  图7 数据通信流程

  结语

  超过1Gbps传输速率的通信接口一般采用光纤、PCE、PCIe等接口方式。本文采用双网口方式可以降低设备要求,和既有设备方便连接。使用多核DSP提高处理器工作能力,在保证大容量数据传输过程中,处理器仍然具有对数据的计算能力。双网口设计方案可以弥补单网口的传输速率不足,又可以降低其他接口的硬件复杂度,是介于两者之间的有益补充。在嵌入式设备中具有一定的应用价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

随着在线会议、直播和游戏语音交流的普及,高质量的音频输入设备变得越来越重要。为此,边缘AI和智能音频专家XMOS携手其全球首家增值分销商飞腾云科技,利用其集边缘AI、DSP、MCU和灵活I/O于一颗芯片的xcore处理器...

关键字: AI DSP MCU

多DSP集群的实时信号处理系统,通信拓扑的优化直接决定任务调度效率与系统吞吐量。RapidIO与SRIO作为嵌入式领域的主流互连协议,其带宽利用率差异与QoS配置策略对集群性能的影响尤为显著。以无线基站、雷达阵列等典型应...

关键字: DSP 通信拓扑优化

随着5G网络普及与物联网设备爆发式增长,边缘计算正从概念验证走向规模化部署。据IDC预测,2025年全球边缘数据量将占总体数据量的50%,这对边缘节点的实时处理能力提出严苛要求。在此背景下,AI加速器的DSP化趋势与可重...

关键字: AI加速器 DSP

在工业控制领域,数字信号处理器(DSP)的性能直接决定了系统的实时控制能力和可靠性。德州仪器(TI)的C2000系列芯片凭借其卓越的采样、控制和功率管理能力,长期以来在全球工业控制市场占据绝对领导地位,广泛应用于能源、电...

关键字: TI C2000 DSP 格见半导体 芯来 RISC-V 工控

2025年7月16日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 持续供货Texas Instruments (TI) 的新产品和解决方案。作为一家授权...

关键字: 线性稳压器 栅极驱动器 DSP

在当今数字化浪潮的推动下,数据流量呈爆炸式增长,数据中心、5G通信网络以及云计算等领域对高速光通信的需求愈发迫切。800G光模块作为高速光通信的关键组件,其性能直接影响着整个通信系统的传输效率和可靠性。数字信号处理(DS...

关键字: 800G DSP PAM4均衡算法

以氢燃料电池空压机为研究对象 ,开发超高速永磁同步电机控制器 ,采用传统的IGBT主功率器件 ,且为两电平主回 路结构形式 ,通过改进的V/F控制算法 ,完成了控制器的设计。搭建了试验平台进行测试 ,结果表明 ,控制器能...

关键字: 超高速永磁同步电机 V/F控制 DSP

医疗设备智能化进程,数字信号处理器(DSP)作为核心计算单元,承担着实时处理生物电信号、医学影像等敏感数据的重任。然而,随着医疗设备与网络互联的深化,数据泄露风险显著增加。美国《健康保险流通与责任法案》(HIPAA)明确...

关键字: 医疗设备 DSP

数字信号处理器(DSP)作为实时信号处理的核心器件,其架构设计直接决定了运算效率与功耗表现。自20世纪70年代DSP理论诞生以来,其硬件架构经历了从冯·诺依曼结构到哈佛结构的演进,这一过程体现了对实时性、并行性与存储带宽...

关键字: DSP 冯·诺依曼

随着嵌入式系统对实时性、多任务处理能力的需求日益增长,实时操作系统(RTOS)在数字信号处理器(DSP)中的移植与性能优化成为关键技术课题。DSP以其高效的数值计算能力和并行处理特性,广泛应用于通信、图像处理、工业控制等...

关键字: RTOS DSP
关闭