当前位置:首页 > 电源 > 数字电源
[导读]  图5中,使能端EN(3)与+5 V相连,使其始终处于工作状态;信号输入端S1~S4(13、11、10、9)分别与PSD输出信号Diff X、Diff Y、Sum X、Sum Y 相连;输入信号选择端A0、A1(16、

  图5中,使能端EN(3)与+5 V相连,使其始终处于工作状态;信号输入端S1~S4(13、11、10、9)分别与PSD输出信号Diff X、Diff Y、Sum X、Sum Y 相连;输入信号选择端A0、A1(16、1)分别由Mgea16 单片机的I/O 口PC3(25)、PC4(26)控制、A2(4)与GND相连,依序选通4路输入电压信号,送至图6所示的电压跟随器后进入AD1674进行模/数转换;

  

 

  3.2 模/数转换电路

  AD1674是美国AD公司推出的一款12位带并行微机接口的逐次逼近型模/数转换芯片。基本特点和主要参数如下:

  带有内部采样保持的完全12位逐次逼近(SAR)型模/数转换器;采样频率为100 kHz;转换时间为10 μs;数据可并行输出,采用8/12 位可选微处理器总线接口;采用双电源供电:模拟部分为±12 V或±15 V,数字部分为+5 V.

  

 

  如图7 所示,AD1674 的数据输出端口DB4~DB11(20~27)与单片机的PB口(1~8)相连;AD1674工作状态由逻辑端口(2~6)控制,其真值见表1.

  

 

  由单片机控制CE 为高电平,CS、R/C、A0 为低电平,启动12 位数据转换;转换状态输出端口STS(28)与单片机的PD2(16)相连,当STS为高电平时,AD1674处于模/数转换状态,而STS为低电平时,模/数转换结束,可以读取转换数据;由于只采用8个输入端口读数据,故转换的12位数据需要分两次读出:即先将R/C、A0端口(5、4)电平置高,读低4位数据至单片机,然后将A0端口电平置低,读高8位数据至单片机。

  3.3 单片机控制电路

  单片机是整个电路系统的核心部件,其作用是控制实验过程和数据的转换、存储与传输。本实验采用ATMEL 公司的Atmega16单片机,其引脚及功能如图8所示。

  

[!--empirenews.page--]

 

  3.3.1 信号控制

  单片机的PC1 口(23)接7407 同相缓冲器,信号经电流驱动后调制激光器发光。

  3.3.2 数据存储和串行传输

  (1)数据存储

  如图4 所示,单片机的PB 口(1~8)与AD1674 的数据输出端(20~27)相连,为A/D 转换后的数字电压输入口,每次传输8位数据。由3.2节可知,电压信号经A/D转换后为12位数字信号,需分为2次传输,而单片机也需要2个字节存储1个数据。即采集PSD输出的Diff X、DiffY、Sum X、Sum Y 等4个数据需要8个字节存储。

  (2)数据传输

  由于采集的数据在单片机中是连续存储的,因此数据通过RS 232 串行传输至计算机时,需对采集的数据进行分组、加标识,以免数据组合时发生错误。

  表2给出了对Diff X、DiffY、Sum X、Sum Y 4个12位二进制数据编码的规则。

  

 

  即采集的一组数据,每个字节中前2位为标识位,后6位为数据位,并且只对前4个字节的标识位进行编码。

  Mega16单片机的串行通信端口RXD(14)和TXD(15)分别与MAX232串行通信芯片[8]的RXD(11)和TXD(12)端连接,通过串口实现与计算机的通信,并可在计算机中使用串口调试工具Comtools软件读取数据。最后经数学处理,得到表示x,y 位置信息的数字电压值。

  3.4 实际电路

  图9为数据采集、信号传输及过程控制单片机电路的实物图。

  

 

  4 结论

  本文先通过介绍高精度光电位置传感器PSD的工作原理,并根据实际选取的SiTek公司出品的SPC01型PSD的结构及输出特性,然后提出了一种基于单片机技术的PSD输出信号数据采集电路的设计方案。该设计方案中的电路在保证有效对数据进行快速采集的基础上,具备结构简单、成本低廉、体积较小等优点,适合在实验室条件下进行实验操作,为后续的PSD定位精度、输出特性、抗干扰措施等研究奠定基础。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭