当前位置:首页 > 电源 > 数字电源
[导读]  意法半导体(ST)日前宣布推出业界首款基于ARM最新Cortex-M7内核的STM32 F7系列微控制器,其性能远超ST之前的32位STM32F4微控制器,通过无缝升级路径可将处理性能和DSP性

  意法半导体(ST)日前宣布推出业界首款基于ARM最新Cortex-M7内核的STM32 F7系列微控制器,其性能远超ST之前的32位STM32F4微控制器,通过无缝升级路径可将处理性能和DSP性能提高一倍。

  “作为STM32微控制器产品家族的高端产品,STM32 F7使内存和外存的性能达到一个新的水平,给开发人员带来新的创新机会,保证他们不需要再根据存储器性能调整代码。”ST微控制器市场总监Daniel Colonna表示,“而之所以能够在业内率先推出基于Cortex-M7的产品,首先得益于ST与ARM密切的合作关系。其次,ST也与第三方客户保持着广泛的合作,确保他们能够及时得到ARM最新的技术支持并推出新产品。强大的开发生态系统结合多元化的微控制器、传感器、功率器件和通信产品组合,以及贴心的客户技术支持服务,ST一直在延续STM32微控制器家族的优势。”

  Cortex-M7为高性能而生

  ARM嵌入式市场营销副总裁Richard YORK表示:“智能硬件的发展势不可挡,很多连网的智能嵌入式设备要求处理器提供更多的本地化处理功能,这对CPU的性能要求更高;此外,更多显示、人机交互的语言识别需求也要求更高的CPU处理性能。顺应这两大趋势,ARM推出了最新的Cortex-M7内核。”

  Cortex-M7目标定位于Cortex-M系列最高性能的CPU内核,针对诸如智能控制系统的高端嵌入式应用,包括马达控制、工业自动化、先进语音功能、图像处理、各类连网交通工具应用以及物联网相关应用。

  相较于目前性能最高的ARM架构微控制器,Cortex-M7可提升两倍的运算及数字信号处理性能,其性能测试结果高达5CoreMark/MHz,能够更快速地处理音频、影像数据及语音识别。Cortex-M7提供用于C语言的程序模型,且与现有Cortex-M系列产品二进制兼容。凭借完整的生态系统与软件兼容性,现有Cortex-M内核能够轻松迁移至Cortex-M7,设计人员可以重复利用各种程序代码,降低研发及维护等成本。

  Cortex-M7如何实现高性能?Richard YORK介绍,首先是采用分支预测的6级超标量流水线,因此可同时支持单精度和双精度浮点单元;二是支持64位的AXI AMBA4互联,可为高效内存操作提供I-cache与D-cache;三是兼顾实时性、快速的相应能力,支持12个周期的终端延迟。

  值得一提的是,Cortex-M7在DSP性能方面进行了大幅优化,甚至比热门的DSP产品更具竞争力。Cortex-M7主要的DSP特征包括:读取、内存与MAC的平行操作;支持SIMD与单周期MAC;单精度与双精度浮点单元;最小循环开销(分支预测/BTAC);以及优化的DSP库。Richard YORK透露,ARM在规划Cortex-M7时,就希望能在某些应用领域用高端MCU取代DSP。Cortex-M7内核除了提供DSP的硬件部分,还配套DSP的软件服务,ARM Keil工具链帮助实现支持Cortex-M7的编制和调试,同时ARM软件界面也支持底层标准算法和接口,包括DSP优化算法。

  

 

  图:Cortex-M7方框图

  智能系统架构提升STM32 F7处理性能

  Daniel Colonna介绍,STM32 F7意在通过在Cortex-M7内核外围集成可互连的恰当外设,打造史上智能化程度最高的STM32微控制器。具体而言,STM32 F7采用两个独立机制取得零等待执行性能:内部闪存采用ST ART Accelerator访存加速技术;为外部存储器(或内部存储器)提供一级高速缓存(4KB指令+4KB数据高速缓存)。AXI和先进高性能总线矩阵(Multi-AHB, Advanced High-performance Bus),内置双通用直接访存(DMA)控制器和以太网、通用串行总线On-the-Go高速(USB OTG HS, Universal Serial Bus On-the Go High Speed)和Chrom-ART Accelerator图形硬件加速等设备专用DMA控制器。此外,具有大容量分布式架构SRAM:在总线矩阵上有320KB共享数据存储容量(包括240KB +16KB)和保存实时数据的64KB紧耦合存储器(TCM, Tightly-Coupled Memory)数据RAM存储器;保存关键程序的16KB指令TCM RAM存储器;在低功耗模式下保存数据的4KB备份SRAM存储器。

  超出人们预期的是,STM32 F7的DSP性能是STM32 F4系列的2倍多,但其能耗并未牺牲。新系列运行模式和低功耗模式(停止、待机和VBAT)的功耗与STM32 F4保在同一水平线上:工作模式能效为7 CoreMarks/mW;在低功耗模式下,当上下文和SRAM内容全都保存时,典型功耗最低120 uA,典型待机功耗为1.7uA,VBAT模式典型功耗为0.1uA。

  STM32 F7系列采用ST的90nm嵌入式非易失性存储器CMOS制造工艺,这一工艺是STM32 F4产品于2011年发布至今Cortex-M微控制器领域性能最高的制造技术,这也证明了ST正在履行“加快自己及客户的创新,缩短上市时间”的承诺。随着ST开始进军更先进的技术节点,面向未来的系统架构有更大的空间提高微控制器的性能,据了解,ST的目标是在下一个技术节点达到2000CoreMark。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭