当前位置:首页 > 电源 > 数字电源
[导读]根据自适应滤波的原理,主要论述和分析了易于实现的最小均方差算法,通过比较IIR结构和FIR结构滤波器的优缺点,采用横向FIR结构的自适应滤波器来实现。为了满足自适应滤波的

根据自适应滤波的原理,主要论述和分析了易于实现的最小均方差算法,通过比较IIR结构和FIR结构滤波器的优缺点,采用横向FIR结构的自适应滤波器来实现。为了满足自适应滤波的实时性要求,采用TMS320F28234芯片的系统设计,并设计了其硬件最小系统和软件系统,最后用TMS320F28234实现自适应滤波器。仿真结果表明,本方案的自适应滤波器滤波效果优越,具有较强的实用性。

0 引言

滤波是信号处理领域的一种最基本而又极其重要的技术。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器在电子电路系统中应用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以滤波器的理论研究和产品开发非常的重要。

自适应滤波器是相对固定滤波器而言的,当固定的设计规范是未知的,或者采用时不变滤波器不能满足设计的要求设计规范时,就需要采用自适应滤波器。严格地讲,自适应滤波器是一种非线性滤波器,因此不满足齐次性和叠加性条件,如果在某个给定的时刻固定的滤波器参数,则其输出信号是输入信号的线性函数。自适应滤波器是在没有任何关于信号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波,所以其适用范围更广。

1 DSP的自适应滤波器的总体方案设计

本系统采用利用数字信号处理器来完成自适应滤波器的设计,系统如图1所示。

 

 

系统工作原理:自适应滤波器的整体设计思路中模拟信号输入,输入信号首先进行抗混叠滤波,然后将模拟信号变换成数字信号。根据奈奎斯特抽样定理,为保证有用信息不丢失,抽样频率至少是输入带限信号最高频率的2倍。经过ADC转换成数字信号,DSP芯片预先设计好的自适应滤波算法程序,对输入的数字信号处理。这种自适应滤波器的设计是具有跟踪信号和噪声变化的能力,也不需要知道关于输入信号的先验知识。

经过DSP芯片处理后的信号通过DAC再转换成连续的模拟波形,之后进行平滑滤波就可得到需要的模拟信号。

1.1 自适应滤波器原理

自适应滤波器是一种能够自动调整本身参数的特殊维纳滤波器,在设计时不需要预先知道关于输入信号和噪声的统计特性,它能够在工作过程中逐步“了解”或估计出所需的统计特性,并以此为依据自动调整自身的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整参数,使滤波器性能重新达到最佳。

自适应滤波器中参数可调数字滤波器结构可以是FIR数字滤波器或IIR数字滤波器,也可以是格型数字滤波器,输入信号x(n)通过参数可调数字滤波器后产生输出信号(或响应)y(n),将其与参考信号(或称期望响应)d(n)进行比较,形成误差信号e(n),并以此通过某种自适应算法对滤波器参数进行调整,最终使e(n)的均方值最小。

图2所示即为自适应滤波器的一般结构。

 

 

1.2 自适应滤波器结构

自适应IIR滤波器与自适应FIR滤波器相比较,自适应IIR滤波器存在突出的缺点,主要的缺点包括:自适应IIR滤波器存在不稳定的可能性倾向;而且收敛速度慢等。因此,一般采用FIR滤波器作为自适应滤波器的结构。自适应滤波器最直接的实现就是直接形式的FIR结构,但在本论文中采用FIR横向结构设计自适应滤波器。这种结构仅包含有由延迟级数所决定的有限个存储单元,可归结为有限冲激响应(FIR)或横向滤波器(Kallman)。输入信号被若干延迟单元延时,其延迟时间可以是连续的。这些延迟单元的输出与存储的一组权系数依次相乘,将其乘积相加得到输出信号。这意味着输出是输入信号与所存储的权系数或冲激响应的卷积。这种滤波结构仅包含有零点(因为没有递归反馈单元),因此,若要获得截止的频率特性,则需要有大量的延迟单元。但是,这种滤波器始终是稳定的,并能提供线性相位特性。图3所示为FIR横向滤波器结构。

 

 

1.3 DSP的最小硬件系统设计

DSP的硬件最小系统设计包括DSP芯片、电源转换电路、时钟电路、复位电路、JTAG仿真接口等,如图4所示。

 

[!--empirenews.page--]

 

2 基于DSP的自适应滤波器的软件设计

采用TMS320F28234实现自适应滤波器,自适应算法采用基本的LMS算法,滤波器的结构采用横向FIR结构。

自适应滤波器的TMS320F28234的设计中,程序设计语言运用汇编语言,自适应滤波器程序设计流程如图5所示。

 

 

3 仿真验证

为了说明自适应滤波器的优越性,这里通过仿真结果来表明。通过引入一个已有的数据文件方式得到一个受到噪声干扰的正弦波信号,该波形作为自适应滤波的输入信号。自适应滤波程序在CCS环境下编译、链接、修改语法错误,编译链接通过后,加载并连接程序,连接生成公共目标代码文件,在线下载到DSP中运行。将编译产生的可执行文件下载到DSP芯片中后,经过运行得到时域图,输入信号的时域图如图6所示。

 

 

由图6可以看到,低频信号中叠加了有噪声信号,导致低频信号出现了较大的畸变。低频的信号中叠加了比较多的高频噪声,只有进行高频滤波才能够得到比较好的原始低频信号。在观察输出波形时,能够看到输出波形中仅剩余了低频信号,滤除了高频成分。通过图6和图7的对比,输入信号的高频噪声基本上得到了滤除。但是由于参数设置不够精确等原因造成的高频噪声没有得到完全消除,但是也很明显的显现了低通滤波的目的。

 

 

4 结语

本文论述了基于TMS320F28234的自适应滤波器系统的设计方案。方案中的自适应滤波器能够在没有任何关于信号和噪声的先验知识的条件下,达到最优滤波的目的。根据自适应滤波的原理,主要论述和分析了易于实现的最小均方差算法,通过比较IIR结构和FIR结构滤波器的优缺点,采用横向FIR结构的自适应滤波器来实现。为了满足自适应滤波的实时性要求,采用TMS320F28234芯片的系统设计,并设计了其硬件最小系统和软件系统,最后用TMS320F28234实现自适应滤波器。在自适应滤波器的仿真结果中,自适应滤波器实现了对含有噪信号的频率跟踪,并表明自适应滤波器能很好地消除叠加在信号上的噪声。进而验证了本方案的自适应滤波器滤波效果优越,具有较强的实用性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭