当前位置:首页 > 电源 > 数字电源
[导读]1 引言利用数字输入控制微调模拟输出有两种选择:电位器">数字电位器和数/模转换器(DAC),两者均采用数字输入控制模拟输出。通过数字电位器可以调整模拟电压;通过DAC既可以

1 引言

利用数字输入控制微调模拟输出有两种选择:电位器">数字电位器和数/模转换器(DAC),两者均采用数字输入控制模拟输出。通过数字电位器可以调整模拟电压;通过DAC既可以调整电流,也可以调整电压。电位器有三个模拟连接端:高端、抽头端(或模拟输出)和低端(见图1a)。DAC具有队应的三个端点:高端对应于正基准电压,抽头端对应于DAC输出,低端则可能对应于接地端或负基准电压端(见图1b)。

DAC和数字电位器存在一些明显区别,最明显的差异是DAC通常包括一个输出放大器/缓冲器,而数字电位器却没有。大部分数字电位器需要借助外部缓冲器驱动低阻负载。有些应用中,用户可以轻易地在DAC和数字电位器之间做出选择;而有些应用中两者都能满足需求。本文对DAC和数字电位器进行了比较,便于用户做出最恰当的选择。

2 数/模转换器

DAC通常采用电阻串结构或R-2R阶梯架构,使用电阻串时,DAC输入控制着一组开关,这些开关通过匹配的一系列电阻对基准电压分压。对于R-2R阶梯架构,通过切换每个电阻对正基准电压进行分压,从而产生受控电流。该电流送入输出放大器,电压输出DAC将此电流转换成电压输出,电流输出DAC则将R-2R阶梯电流通过放大器缓冲后输出。如果选择DAC,还要考虑具体指标,如串口/并口、分辨率、输入通道数、电流/电压输出、成本等。对于注重速度的系统,可以选用并行接口;如果注重成本和尺寸,则可选用3线或2线串口,这种器件引脚数较少,可显著降低成本,而且,有些3线接口能达到26 MHz的通信速率,2线接口能够达到3.4 MHz的速率。DAC的另一个指标是分辨率,16位或18位DAC可以提供微伏级控制。例如,一个18位、2.5V基准的DAC,每个LSB对应于9.54μV,高分辨率对于工业控制(如机器人、发动机)产品极为重要。目前,数字电位器能够提供的最高分辨率是10位或1 024抽头。数/模转换器的另一个优势是能够在单芯片内集成多路转换器,例如,MAX5733内置32路DAC,每路都能提供16位的分辨率。当前的数字电位器最多只能提供6个通道,如DS3930。

DAC能够源出或吸入电流,为设计者提供更大的灵活性。例如,MAX5550 10位DAC通过内部放大器、P沟道MOSFET和上拉电阻能够提供高达30mA的输出驱动。而MAX5547 10位DAC结合放大器、N沟道MOSFET和下拉电阻可以提供3.6 mA的吸电流。除电流输出外,一些DAC还可以与外部放大器连接提供额外的输出控制。因为数/模转换器通常内置放大器,成本要高于数字电位器。但随着新型DAC尺寸的缩小,成本差异也越来越小。

3 数字电位器

前面已谈到数字电位器可以通过数字输入控制电阻。图la中的3端数字电位器实际上是一个固定端到端电阻的可调电阻分压器。通过将电位器中心抽头与高端或低端相连,或使高端或低端浮空,数字电位器能配置成2端可变电阻。与数/模转换器不同,数字电位器能将H端接最高电压或最低电压端。选用数字电位器时,用户也需考虑具体的指标:线性或对数调节、抽头数、抽头级数、非易失存储器、成本等。控制接口有递增/递减、按钮、SPI和I2C。

与数/模转换器一样,数字电位器通过串口通信,包括I2C和SPI。此外,数字电位器还提供了2线的递增、递减接口控制。通常,DAC与数字电位器的显著区别在于数/模转换器内部带有输出放大器。通过该输出放大器可以驱动低阻负载。

4 DAC/电位器的选择

很多应用场合,用户可以轻易地在DAC和电位器之间做出选择。要求高分辨率的电机控制、传感器或机器人系统,需要选用DAC。另外,高速应用中,例如基站、仪表等对速度、分辨率要求较高,甚至需要并行接口的DAC。电位器的线性特性便于实现放大器反馈网络。相对于数/模转换器,对数电位器更适合音量调节。

但在当前的许多应用中,DAC与数字电位器之间选择的界限比较模糊,图2中的DAC和数字电位器都可用于控制MAXl553 LED驱动器。MAXll53亮度(BRT)输入的直流电压和检流电阻决定了LED的电流。

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭