当前位置:首页 > 电源 > 数字电源
[导读]阀控型铅酸 (VRLA) 蓄电池常用于不间断电源(UPS)系统的三相来源。由于其重量与尺寸的缘故,数据中心需具备强化的承载结构。VRLA 电池的性能特性也会受温度影响,进而增加空调系统的负载。VRLA 电池并非特别耐用且需定时更换,这也造成营运成本的增加。

阀控型铅酸 (VRLA) 蓄电池常用于不间断电源(UPS)系统的三相来源。由于其重量与尺寸的缘故,数据中心需具备强化的承载结构。VRLA 电池的性能特性也会受温度影响,进而增加空调系统的负载。VRLA 电池并非特别耐用且需定时更换,这也造成营运成本的增加。

由于 VRLA 电池没有经济可行的替代方式,因此设计工程师必须忍受其缺点。不过,近年来锂电池的情况有所改变。直到目前为止,由于在价格、能源、容量、安全与可靠性之间未达到合理平衡,因此数据中心的不间断电源系统并没有使用的可行性。但由于电动车技术的进步,此问题已获得解决。第一部由锂电池供电的不间断电源系统已于 2016 年上市。现在所有的主要大厂皆使用锂电池,此方向已公认为最有希望的选择。根据 Bloomberg New Energy Finance 报导,截至 2025 年,锂电池解决方案将占数据中心使用 UPS 市场的 40%。

锂电池的优缺点

消费电子公司通常使用锂钴电池,该电池容量可达多个安培时,这些不间断电源系统均搭载矩形的锂锰电池。而其安装容量为 60 安培时,并搭载更长的使用寿命与多种程度的故障防护。有时个别模块,甚至个别电池需负责监控重要性能参数,如温度、电压和电流。有时电源机柜或甚至整部系统都可负责此监控流程。必须实施监控才能完全掌控充电与放电流程,避免发生临界加热与不可逆的化学程序。锂电池也具备更高的能量密度 (Wh/kg) 与更高的输出功率密度 (W/kg)。拥有与铅酸电池相似的能量储存容量,而重量则是铅酸电池的三分之一不到,此优点有助于降低系统的总质量达 60-80%。

近年来,数据中心因空间限制与更高效率营运的需求而皆以增加其功率密度为主要目标。更有效率的可用空间俨然是数据中心拥有者最重要的工作之一。体积小巧的锂电池能减少在不间断电源系统中的占用空间达 50-80%。此类电池的充电时间更少且自行放电的速率更佳,当发生频繁的运行中断时可扮演重要的角色。闲置时,锂电池每月会损失约 1-2% 的电量。最重要的优势为其长效的使用寿命。铅酸电池的使用寿命极短,只有 3 至 6 年。而另一方面,锂电池则能持续使用约 10 年。根据不同的化学、技术与温度,锂电池的充电效率可长达 5,000 次生命周期且免维护,而铅酸电池的平均充电效率则只有 700 次生命周期。

锂电池的整体拥有成本为期 10 年(数据中心 UPS 的平均使用寿命),相较之下铅酸电池少了 39%。尽管此为乐观预估值,但至少能保证节省 10%。锂电池唯一一个严重的缺点就是初期投资明显更高。这也是为何大型数据中心早已成为导入新型解决方案的先驱。此设施更重要的目的在于降低整体拥有成本,而非短期获利,即便在此情况下积少成多的节省成本仍相当可观。另外,小型电池的好处能更有效的利用可用空间,同时可靠的监控系统也能确保更优异的安全及稳定的性能。锂电池可在比 VRLA 更高温度下运行,而不会损失容量,并可降低冷却系统的负荷。当然,甚至还有配备锂电池的单相 UPS。各种应用模型都是从最大数据中心开始、其次为工业应用,最后于小型服务器室或甚至个别机架结束。

方便更换

所有客户最后都会自问的最重要问题是:目前是否是将不间断电源系统升级为锂电池的适当时机?若要回答此问题,首先要考虑的是技术容量的可用性。新电池无法适用于所有 UPS 机型,因此可能需要重大的硬件与嵌入式软件升级。即使在相同的标称电压下,电池充电与放电的特性也会有不同。

在数据中心中一般 UPS 系统的预期寿命通常为 10-15 年。铅酸电池可使用 3-6 年,而锂电池可使用长达 10 年或甚至更久。在 UPS 系统(低于 5 年)的使用初期,大量更换为铅酸电池可证明其实用性。不过换成锂电池后,极可能到 UPS 系统使用寿命结束时锂电池还能使用。若您的不间断电源系统使用寿命接近中期,电池使用寿命可能更长,因此在大多数情况下更换电池根本毫无意义。在其使用寿命结束时,应考虑将您整套的 UPS 系统换为全新的锂电池解决方案。不过,即便对老旧的 UPS 系统而言,安装昂贵的电池仍十分方便。您应考虑其价格不断下降,以及老旧系统维护成本与完全更换成本的比率。

预测及展望

尽管由锂电池供电的 UPS 系统能持续降低营运成本及整体拥有成本,但大部分的客户仍采用历经时间检验的 VRLA 解决方案。首先可通过使用锂电池只有长期优势的观点解释此现象。不过,这确实会大幅增加资金成本。在任何情况下,客户在创新的投资部分每年都持续成长且只涨不跌。对大型数据中心而言,节省的数量会十分庞大,因此锂电池供电系统将会在企业部门逐渐增加。锂离子化学也持续在进步中。新解决方案和技术将随时间出现,而锂电池的价格将进一步下降。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭