当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]上世纪七八十年代就出来了各种数据传输的协议,比如T1/E1载波系统(2.048Mbps)、X.25中继系统、ISDN(综合业务数字网)等,那时的速度还比较慢的,到了九十年代,SDH(Synchronous Digital Hierarchy,同步数字体系)和SONET(Synchronous Optical Network同步光纤网)标准出现,其基本速度就是STM-1 155.520Mbps,STM-4为622.080Mbps,STM-16为2488.240Mbps,到更后来WDM(Wavelength

上世纪七八十年代就出来了各种数据传输的协议,比如T1/E1载波系统(2.048Mbps)、X.25中继系统、ISDN(综合业务数字网)等,那时的速度还比较慢的,到了九十年代,SDH(Synchronous Digital Hierarchy,同步数字体系)和SONET(Synchronous Optical Network同步光纤网)标准出现,其基本速度就是STM-1 155.520Mbps,STM-4为622.080Mbps,STM-16为2488.240Mbps,到更后来WDM(Wavelength Division Multiplexing, 波分复用)技术,再到最新的OTN(OpticalTransportNetwork,光传送网),这里面最重要的个概念就是TDM(Time Division Multiplexing, 时分复用)。

时分多路复用(Time-Division Multiplexing,TDM)是一种数字的或者模拟(较罕见)的多路复用技术。使用这种技术,两个以上的信号或数据流可以同时在一条通信线路上传输,其表现为同一通信信道的子信道。但在物理上来看,信号还是轮流占用物理通道的。时间域被分成周期循环的一些小段,每段时间长度是固定的,每个时段用来传输一个子信道。例如子信道1的采样,可能是字节或者是数据块,使用时间段1,子信道2使用时间段2,等等。一个TDM的帧包含了一个子信道的一个时间段,当最后一个子信道传输完毕,这样的过程将会再重复来传输新的帧,也就是下个信号片段。

 

数字传输就像打包裹,最基本单元是一个小包裹,四个小包裹打成一个中的,再四个中的打成一个大的,再四个大的打成一个更大,然后再特大的。比如SONET的传输速度就是STM-1/-4/-16等这样叠加上去,以2的指数倍往上翻。其中TDM-16速度为2488.240MBps,就是我们通常说的2.5Gbps。

上面说了堆协议,那总要具体的物理实现,一般选用铜线或光缆进行远距离传输。以光缆为例,数据先由电路中的并行数据变成串行传送出去,然后再经过光纤接口,变成光信号在光纤里传输,接收时先由光信号变成电信号,再由串行变成并行到内部使用。其中由并行到串行/串行到并行经过的就称为SERDES PHY,高速SERDES的技术实现难度较高,得由模拟电路实现,在很多场合就是一块单独的SERDES PHY芯片,那就有专门的公司来做这个事情,比如在业界大名鼎鼎的TI德州仪器,其TI芯片就卖得很好。逐渐实现这样的产业链:做数字电路的、模拟电路的、测试设备的、生产制造的(包括PCB和SERDES PHY、光口、光纤等),已经定了个基本速率后,再往上的更新换代往往是X2地叠加,在数字电路上最好实现,在模拟电路上也有这样的动力,整个技术就一直这样往前走下去。

回到标题高速串行接口由什么决定的来,PCI总线由Intel公司于91年提出,之后移交给第三方机构PCI SIG。PCI SIG由多家业内公司组成的联盟,别的公司也可以申请加入成为会员,TI也是早期会员之一。就像联合国一样,Intel等公司像常任理事国一样拥有更大的主导权;USB于94年由带头大哥Intel联合微软、HP、NEC等电脑公司组成USB-IF组织,96年推出USB1.0标准;(同期还有Apple推出的FireWare火线,也红火了好多年)由此可见,Intel对PCI/PCIE和USB的建立和发展一直拥有极大的主导权。

2001年PCIE开始制定,决定以串行方式代替并行的PCI总线时,那时产业内2.5G PHY已经比较成熟了,PCI组织PCI-SIG决定直接借鉴此速度就很正常;等到PCIE2.0发布已经是过2007年,就直接X2变成5G了; USB3.0于2008年发布,直接借鉴业界比较成熟的5G方案也就很正常了; 而PCIE3.0发布是2010年时(为什么PCIE3.0是8G而不是10G,这算是个折衷吧,速度越快对PCB走线设计和生产、线缆、测试仪器等要求越高,USB3.0采用64b/66b或128b/130b编码方案,8G*64/66=7.88G,解码后的速度几乎就是2.0的二倍,2.0采用传统的8b/10b编码,解码后速度5G*8/10=4G)。

 

等到USB3.1发布,也就是最近的事情(2014年),觉得10G PHY也比较成熟了,那也直接采用10G吧,USB3.1采用128b/132b编码,效率与PCIE3.0是等效的,它直接向PCIE借鉴了很多内容。

而ThunderBolt,定位在更高速速度传输,其1.0速度最开始设计时就是一 路10G PHY(大约2011年),而后2.0就成两路10G PHY了,最近的3.0成两路20G PHY,为什么不直接成40G PHY,工艺做不上去啊。

很早前,业界有个传说,铜界质PCB走线最高速度只能到16G,几年前就已经打破了,28G甚至32G以上跑铜界质的高速PHY已经有DEMO演示了,ThunderBolt2.0推出两路10G PHY,自然也是业界有这样能力去推出成熟产品。不出意外的是,ThunderBolt定位在高端,从最先推出1.0接口的MAC电脑(2011年),到现在已经四年过去了,相对来说还很不普及,只在高端电脑上才有配备,其外设产品,比如支持该接口的外接存储和高清显示器见到过报道,但市场上卖得真不太多,比起这几年一下子普及开来的USB3.0还是相差不少。与此类似待遇的是DisplayPort接口,显示器接口从最早的VGA到DVI,到同时支持声音图像传输的HDMI、DisplayPort接口,HDMI逐渐变得常见,尤其是电视接口上,而DisplayPort仍然不太多见。而ThunderBolt在外观上与Mini DP接口兼容,在功能上可认为是图像传输接口DP和数据传输协议PCIE的合体。

 

这不,Intel一琢磨,那ThunderBolt3.0改成USB3.1 Type-C接口兼容吧,这样支持ThunderBolt3.0的外设既可以连接对应的ThunderBolt3.0 host,享受40G的高速,也可以接在USB3.1 Type-C上,尽管只能跑USB3.0 5G速率(注意,资料显示所兼容的控制器是USB3.0,而不是最新的USB3.1; 也有人指出Intel推出的控制器是支持10G速度的。无论如何PHY通道是支持的,这主要取决于控制器部分),其实这样对于外设厂商也是一大利好,用户也可以放心地买,不用担心接口不支持。

最后做个总结:高速串行接口速度由什么决定?当时协议公布时前代技术的积累与影响和已成熟技术,二者占重要因素。比如2.5G速率和STM-1 155M的关系,比如不同年代PHY技术的成熟度,再者还有业界领先公司在制定标准时的号召力及技术前瞻性,如Intel在多种协议上的主导力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭