当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]近些年来,通信电子技术和计算机技术发展较快,不断推陈出新,尤其是无线电通信技术在近几年得到了迅猛发展。针对日新月异的新技术,大中专院校通信类专业的理论课程及教学方式也需不断更新,才能跟上时代发展的要求。因此相应的通信实验课程及实验设备也需随之更新和发展,以使学生通过实训掌握通信电子学领域的最新技术并培养相应的实践动手能力。

1 引言

近些年来,通信电子技术和计算机技术发展较快,不断推陈出新,尤其是无线电通信技术在近几年得到了迅猛发展。针对日新月异的新技术,大中专院校通信类专业的理论课程及教学方式也需不断更新,才能跟上时代发展的要求。因此相应的通信实验课程及实验设备也需随之更新和发展,以使学生通过实训掌握通信电子学领域的最新技术并培养相应的实践动手能力。

目前国内许多大中专院校使用的通信原理实验装置,其设计技术较陈旧,实验内容没有结合现今先进的通信技术。针对这一现状,我们研制了目前国内较为先进的基于软件无线电技术实现的"JLC型现代通信系统原理技术与DSP综合实验开发系统",他既适合大中专院校通信与电子技术实验使用,也可作为通信电子产品的软硬件开发平台使用。

2 系统功能

该实验开发系统和以往传统的通信原理实验系统相比,最大的特点表现在其实现技术的先进性--采用了DSP技术和FPGA/CPLDD技术。该系统以DSP芯片(CPU)和FPGA超大规模可编程芯片为核心构成基本硬件平台,通过DSP软件编程加载完成一系列DSP系统实验和现代通信系统原理与技术实验。因此,该实验开发系统具有一种开放的体系结构,这种开放性包含3个方面的含义,即对用户使用的开放性、对生产的开放性和对研制的开放性。在此通用硬件平台上,根据研究生、本科生、专科生或中专生等不同层次所需,可下载不同的实验内容,用户也可自己设计实验项目。系统功能框图如图1所示。系统功能模块主要由9部分组成,可完成现代模拟通信系统和现代数字通信系统原理与技术的一系列实验及DSP系统系列实验,也可在此平台上研发DSP应用系统解决方案。

本系统已开发出的系列DSP系统典型实验和通信系统原理与技术典型实验如下:

I/O实验;

A/D接口实验;

D/A接口实验;

外部中断系统实验;

软件中断实验;

定时器实验;

串行口中断实验;

主机接口实验;

正弦信号产生实验;

白噪声生成实验;

FIR滤波器实验;

IIR滤波器实验;

信号合成实验;

DSP串行通信系统实验;

DSP并行通信系统实验;

跳频通信控制系统实验;

放大与衰减;

FFT;

纠错编码技术;

同步技术;

调幅通信系统;

调频通信系统;

调相通信系统;

数字基带通信系统;

PCM通信系统;

ASK通信系统;

FSK通信系统;

PSK通信系统;

模拟通信系统综合实验;

数字通信系统综合实验。

3 软硬件设计

3.1 硬件设计

系统硬件电路框图如图2所示。硬件平台采用模块化功能设计,以便于调试和测量。DSP器件采用TI(Texas Instruments)公司的TMS320VC5402芯片;实验平台的输入输出通道设计采用TI公司的TLV320AICl0芯片完成A/D和D/A转换电路功能,并与DSP的高速多通道缓冲串行口 McBSP进行串行全双工通信,TLV320AICl0将音频采样、抗混叠滤波和音频输出等电路集成在一个芯片上,他是完成语言信号输入输出处理的较佳器件;DSP芯片与外围电路采用3.3V和5V混合逻辑设计;通信子系统中的位同步模块、相关器模块、同步译码模块等由FPGA器件实现,采用ALTERA公司的EPFl0K30A-208PQFP器件;DSP与FPGA之间通过DSP局部总线定义进行连接;DSP与AT89C51单片机的通信通过DSP的HPI接口进行,单片机与PC机进行异步串行通信。

3.2 软件设计

根据上述系统功能和硬件结构,本系统的软件设计主要分为3大部分,即系统主控模块包括自检模块,30个系统各实验功能实现模块和键盘液晶显示模块。软件设计时采用模块化设计,系统主控模块管理调用各软件模块,各部分之间根据自定义的通信协议通讯。应用程序采用3种不同方法编写,系统主控模块用C语言编写,其他应用程序模块用C语言、汇编语言或C语言与汇编语言混合编程方法实现,以达到TMS320VC5402DSP芯片软硬件资源的最佳利用。系统主程序框图如图3所示。

4 结论

设计的现代通信系统原理技术与DSP实验平台具有很强的实用性、先进性、开放性和灵活性,已成功应用于多家单位的教学和科研中,使用情况表明其性能稳定可靠。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭