当前位置:首页 > 嵌入式 > 嵌入式硬件

  1 概 述

  QST108是意法半导体公司针对人机界面的触摸按键控制而推出的电容触摸传感器。其工作原理采用了美国昆腾公司的电荷转移电容专利技术(QProx),支持8个独立按键,且可选择按键状态检测输出或I2C总线控制2种正常工作方式;同时,通过软件命令可使其进入低功耗模式,当有按键按下时可被唤醒。QST108特有的相邻按键抑制算法使得一个按键在按下未松开时,其他按键处于无效状态;自校准和自动漂移补偿功能使其无须人工校准,从而进一步降低了QST108的应用难度。引脚配置如图1所示,各引脚功能如表1所列。

  2 QST108的工作方式

  2.1 按键状态检测输出方式

  QST108具有按键状态检测输出和I2C总线控制2种正常工作方式。引脚OPT1的高低电平决定QST108的具体工作方式:高电平,工作在按键状态检测输出方式;低电平,则为I2C总线控制方式。当工作在按键状态检测输出方式时,8个按键的状态由引脚OPT6的电平决定,直接或以BCD码方式通过引脚KOUT1~KOUT8输出。其中,BCD码方式只用到引脚KOUT1~KOUT4。由于该操作模式较简单,本文只详细讨论了QST108工作在I2C总线控制方式下,与PIC单片机的接口设计及注意事项。

  2.2 I2C总线控制方式

  该方式下,QST108通过I2C总线与微控制器相连。QST108作为从机,引脚OPT4、OPT3、OPT2的输入电平决定了QST108作为I2C总线上从机地址的低3位,高4位地址固定为0101。通过软件设置可提供QST108使用的最大灵活性。可提供5个引脚作为通用输出端口。

  3 QST108的主要操作命令

  当QST108在I2C总线控制方式下工作时,主要是通过I2C总线协议向QST108发送各种控制命令,其中包括初始化设置命令、QST108的按键状态读出命令等。操作命令按其长度分为短命令帧和扩展命令帧。考虑到前者已可完成QST108的正常操作,本文只介绍短命令帧。其数据格式如表2所列,常用命令如表3所列。注意,当QST108收到不同的命令时,会给出不同的应答帧结构。

  当命令为短帧结构时,命令帧的首字节的最高位为1,以与扩展命令相区别。命令ID是命令编号,由5位数据组成,用来区分不同的命令;参数位只有1位,当该位置1时代表该命令具有1个字节的参数,若为0则该命令无参数且无校验和字节;校验位用来产生奇校验,注意该校验位只针对命令帧的首字节(即命令帧的第1个字节中,“1”的个数为奇数);8位校验和是命令帧的前2个字节的累加和的低8位。

  若QST108未能正确接收到命令或接收了非法命令,则会给出统一的含有错误代码的应答帧(只包含一个字节),如表4所列。对QST108来说,与读触摸按键状态命令相对应的应答数据帧结构如表5所列。

  由表4可知,错误帧只有一个字节的数据,校验位提供了判断是否正确接收了该数据的简单依据。错误代码共6位,用来区分不同的错误。比如,错误代码为0x01,表示QST108收到一个非法命令;错误代码为0x11,表示接收的命令的校验和出错等。

  由表5可知该应答帧的长度为4个字节,SCK1~SCK8分别代表了触摸按键的状态,为1表示相应的按键按下,为0表示对应的按键没有按下;最后一个字节为校验和,即应答帧前3个字节的累加和的低8位。需要强调的是,按键错误代码只有低3位有效:位0表示QST108正在进行校准状态;位1表示目前累加的按键次数是否到了器件提供的最大按键数目,为1表示达到最大数目;位2表示目前是否达到最少按健次数。同时,还需注意区分QST108发出的应答帧是错误帧,还是正确接收到命令给出的正常应答帧结构。办法很简单,当软件读取应答帧的第1个字节后判断其最高位:是0,表示为正常的应答;是1,表示接收的为错误帧,此时主机只需产生停止位并进行出错处理或停止操作。

  4 QST108与PIC的接口电路

  图2给出了基于QST108与PIC单片机的触摸按键检测实用电路设计。QST108与PIC通过I2C总线通信,接口简单,按键输入部分参考了其数据手册给出的典型应用电路图的设计方法。单片机选用PIC16F877A,其片内资源丰富,MSSP模块支持I2C总线协议,控制QST108非常方便。QST108的IRQ引脚与PIC16F877A的外部中断输入引脚RB0相连,由于IRQ引脚为开漏输出,所以必须接上拉电阻。当有按键被按下时,IRQ引脚由高变低触发PIC16F877A产生外部中断,单片机发出读取按键状态命令从而确定哪个键被按下,之后根据不同的按键进行不同处理。

5 软件设计

  软件部分包括PIC16F877A和QST108的初始化、触摸按键检测子程序、单片机的中断程序,以及根据按键检测的结果进行各种处理的程序等。限于篇幅,本文只给出了PIC16F877A读取按键状态的子程序。假设QST108的器件地址为0,程序如下:

  结 语

  本文着重介绍了电容式触摸传感器QST108的工作方式、主要操作命令以及QST108与PIC单片机的接口设计。QST108允许用户用普通或挠性印制电路板设计8键电容性触摸板,因此可将导电墨印刷在电路板上作为感应电极;基于QST108应用的外部组件需求很少,每个通道只需1个采样电容和1个电阻。由于具有这些特点,QST108非常适合应用在能够对用户触摸做出响应的智能控制界面中。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭