当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]下述注意事项和要求是混合信号电路板设计中非常实用的指导原则。去耦与旁路图 1 为电源去耦与旁路的实例,需要强调的是,在芯片的引脚处(或至少在距离引脚的几个mm 内)必须安

下述注意事项和要求是混合信号电路板设计中非常实用的指导原则。

去耦与旁路

图 1 为电源去耦与旁路的实例,需要强调的是,在芯片的引脚处(或至少在距离引脚的几个mm 内)必须安装低ESL(等效串联电感)容量为10nF 到100nF 的表面贴装陶瓷电容。对于普通1oz 铜箔、10mil 宽的印制线有:电感约为1nH/mm,电阻约为2mΩ/mm。

1:混合信号电源、接地和旁路

电源与接地层

要使开关电源远离ADC 、DAC 和模拟电路。有时,在芯片附近使用一个单独的5V 三端稳压器作为模拟电源比较好。在电路板边缘处加一个22uF 钽电容或铝电容有助于降低电源噪声和去耦扼流元件的ESR(等效串联电阻)引发的阻尼振荡。

ADI(Analog Devices) 建议采用接地层原理(数字地与模拟地分开),并且在相应的接地上布置单独的数字和模拟电源,但不要使层与层之间重叠(避免噪声的耦合)。两层之间应有2 mm 到3 mm 的空隙。这就意味着利用四层板包括各接地层和电源层可组成一个内部高电容性夹层结构。这样,由各自的接地层和电源层构成了一个极其有效、低ESR 和ESL 的旁路电容,其电容量约为5pF/cm2(30pF/in2 )。IC 引脚通过焊盘和过孔直接通向适当的电源层和接地层。所有数字器件安装在数字电源层和数字接地层的上面;所有模拟器件安装在模拟电源层和模拟接地层的上面。然而,IC 管脚仍需要加上前面提到的陶瓷旁路电容。这里需要强调,接地层是非常重要和非常有效的,它们优化了混合信号部分的性能,而且还能减少EMI 。

地线层的连接

两层之间应有单一通道连接,最好在芯片附近使用零欧姆电阻或铁氧体垫圈。这种连接是完全必要的,它可以避免由于ESD或误电流(这种误电流可能流过芯片基底,并可造成破坏性影响。)引起的电位差,同时隔离了高频电流。对于原型设计,可在多个位置建立可去除的连接,以便调试和测试时与地隔离。此外,不能有任何数字和模拟信号线横跨过数字层和模拟层的间隙。

在混合信号系统中不可避免地会有信号线横跨过数字层与模拟层的间隙

数字信号与元件

所有的数字信号与元件应当远离模拟电路。所有的高速数字信号应当以最短的路径布线在数字接地层和电源层的上面。

IC插座

避免使用IC 插座。

容性负载

最大限度地减小数字输出引脚的容性负载。对于长距离的数字信号线,要求负载与其特征阻抗匹配,以避免过冲/欠冲和振荡。很多应用中特征阻抗Z0约为80Ω,通常用一个82Ω的电阻和一个50pF的电容的RC并联组合作负载就可以匹配这样的长距离的数字信号线。

PLD和VLSI逻辑芯片

不要忽视在同一PCB 上相邻的PLD 和VLSI 逻辑电路芯片,它们往往包含有大量的同步逻辑并产生很大的开关电流,这种开关电流能够渗透到该电路板的其它部分。解决办法是保证这些芯片电源引脚有很好的旁路。这种方法既可保证可靠的工作,也能减小电源线上的噪音。

晶体振荡器(时钟)的问题

对于ADC和DAC,必需保证取样去取样时钟有足够纯净的频谱,也就是要使用低相位噪声的振荡器,此振荡器还要与数字模拟电路部分都分开,因为数字部分干扰影响其频谱纯净度,而振荡信号本身又是数字信号,会干扰系统的模拟部分。为获得更低的相位噪声,可采用晶体厂家推荐的分立元件(双极晶体管或FET)晶体振荡电路(可用一个门来放大振荡信号,以驱动ADC或DAC),而尽量避免用门与晶体构成的振荡器。

多个晶体振荡器可能引起一些问题,如谐波间脉动可能通过其模拟和数字电源或信号以及参考电压进入编解码器。可能的话,在同一PCB 上只同时使用一个晶体振荡器,或者使所需各种频率都来自单个晶体振荡器。

磁场

注意电感和变压器的外部磁场,如有必要,可采用电磁屏蔽元件。RF 去耦扼流线圈可互成直角安装。电源变压器应定向安装在电路板外,并远离关键模拟电路。采用环形电源变压器可以减弱外磁场。

输入信号摆幅

要保证偏置电压、5V CODEC/ADC模拟输入信号不会超过VCC 或低于接地点,即使是瞬间也应避免。使用低泄漏二极管“箝位”或5V 单轨运算放大器缓冲限制输入信号摆幅。

EMI/RFI要求

设计时要考虑模拟输入线和模拟输出线的EMI/RFI要求。输入线可能发射和接收RF信号,DAC模拟输出线则包含高至100MHz的去取样时钟的谐波。

普通设计问题

最小化环路面积;最小化公共阻抗;对于容性耦合可采用隔离、屏蔽和低电路阻抗的措施;对于表面和体泄漏可采用隔离措施;对于并行线间耦合,可采用隔离、特征阻抗匹配、用接地层、用地线居中的并行线、用较低速的逻辑电路……

假定

记住:在调试的时候,任何假定(自己认为是对的东西)都值得怀疑!

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭