当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读] 傅立叶变换是一种将信号从时域转变为频域表示的变换形式,它是数字信号处理中对信号进行分析时经常采用的一种方法。信号的一些特性在时域总是表现得不明显,通过傅里叶算法,将其变换到频域,其特性就一目了然。

傅立叶变换是一种将信号从时域转变为频域表示的变换形式,它是数字信号处理中对信号进行分析时经常采用的一种方法。信号的一些特性在时域总是表现得不明显,通过傅里叶算法,将其变换到频域,其特性就一目了然。例如,来自供电系统的干扰在时域上总是不易识别,但是在频域上就可以很清晰地看到50~60 Hz的离散谐波。
在计算机系统中,实际上是以离散傅立叶变换(DFT)的方式处理数据。由于DFT的运算量比较大,并不适用于嵌入式控制系统,所以实际应用中常使用DFT 的快速算法一快速傅立叶变换(FFT)。虽然FFT 比DFT的计算量减少了很多,但用普通单片机来实现FFT多点、实时运算还是比较困难的。DSP(数字信号处理器)具有运算速度快和精度高的特点,恰好满足FFT的要求,能较好地解决这个问题。
1 快速傅里叶变换的原理
非周期性连续时间信号x(t)的傅里叶变换可以表示为

式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。
有限长离散信号x(n),n=0,1,…,N-1的DFT定义为:

可以看出,DFT需要计算大约N2次乘法和N2次加法。当N较大时,这个计算量是很大的。利用WN的对称性和周期性,将N点DFT分解为两个N/2点的 DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点 DFT等。对于N=2m 点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N次乘法和Nlog2N次加法。图1为FFT与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT算法的优越性。

将x(n)分解为偶数与奇数的两个序列之和,即

x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则

其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为:

上式的运算可以用图2表示,根据其形状称之为蝶形运算。依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。图3为8点FFT的分解流程。


FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。FFT不是DFT的近似运算,它们完全是等效的。



2 快速傅里叶算法在TMS320LF2407上的实现
根据FFT算法的特点,处理器要在一个指令周期内完成乘和累加的工作,因为复数运算要多次查表相乘才能实现。其二就是间接寻址,可以实现增/减1个变址量,方便各种查表方法。再次,FFT变换的输入序列x(n)是按所谓的码位倒序排列的,处理器要有反序间接寻址的能力。DSP控制器专门设计了特有的反序间接寻址,并能在一个指令周期内完成乘和累加的运算。因此,对数字信号的分析处理,DSP比其它的处理器有绝对的优势。本文采用TI公司C2000系列TMS320LF2407芯片来实现FFT算法。
TMS320LF2407定点DSP是一款专为工业控制、电机控制和数字信号处理等用途而设计的DSP,具备单周期乘加指令,具有FFT反序间接寻址功能,最高运行速度为40MIPS。为了充分利用DSP芯片特有的反序间接寻址等功能,FFT算法程序采用汇编语言编写,主程序采用C语言,因此程序具有良好的兼容性和可扩展性。
主程序流程图如图4所示。系统初始化主要完成DSP的系统控制和状态寄存器、等待状态发生器控制寄存器、中断寄存器等的必要设置。

本程序采样函数为:x=sin(20πt),采样频率为640Hz。
输入数据波形如图5所示。一般情况下,我们只关心信号频域的幅度谱。幅度谱|X(k)|2的计算:X(k)=XR(k)+jX(k),|X(k)2|=|Xr(k)|2+|Xi(k)|2。FFT计算结果的信号幅度谱|X(k)|2如图6所示。



输入信号频率是10Hz,根据公式f=kfs/N,f是原始信号的频率,k表示峰值出现的位置,fS是采样频率,N是计算的点数,从幅度谱中看出,峰值出现在k=1处,那么,f=1×640/64=10,与原始信号的实际频率一致,说明计算结果正确。

3 快速傅里叶变换(FFT)的应用
FFT在生产实践和科学研究中有着广泛的应用。图7为FFT的典型应用方案。下面简单介绍一下FFT的应用领域。

(1)频谱分析。对各类旋转机械、电机、机床等机器的主体或部件进行实际运行状态下的频谱分析,可以提供设计数据和检验设计结果,或者找寻震源和诊断故障,保证设备的安全运行等。在声纳系统中,为了寻找海洋水面船只或潜艇,需要对噪声信号进行频谱分析,以提供有用信息,判断舰艇运行速度、方向、位置、大小等。

(2)滤波。滤波是FFT最广泛的应用,它使对波形的频率分量滤波变得十分简单。比如对采样信号进行FFT后,去掉不需要的频率分量,再进行FFT反变换,就得到滤波后的期望信号。
(3)电力监控系统的谐波分析。电力监控系统的谐波分析,需要对采样数据进行FFT运算,然后通过液晶屏或其它人机界面重新绘画出来,以方便技术人员掌握电力的质量。
4 总结
实验证明,此程序在TMS320LF2407定点DSP中运行良好,速度快且运算结果十分可靠,其用于一般的信号处理和工业控制都能满足精度和实时的要求,具有较高的学术价值和良好的应用前景。其次,掌握FFT,学会在空域和频域中同时思考问题,很多时候可以让我们使用简单的方法来解决复杂的问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式系统开发、调试和测试过程中,J-Link作为一种高效的调试工具,为开发者提供了极大的便利。然而,要想充分发挥J-Link的功能,首先需要正确安装其驱动程序。本文将详细介绍J-Link驱动的安装过程,并深入解析其中...

关键字: jlink 嵌入式系统 嵌入式开发

与谷歌的合作使 Nordic 能够在 nRF Connect SDK 中嵌入开发人员软件,以构建与安卓移动设备兼容的谷歌Find My Device和未知跟踪器警报服务

关键字: 谷歌 SoC 嵌入式开发

嵌入式开发作为当今电子工程和信息技术领域的核心分支,涵盖了广泛的软硬件技术和系统集成方法,用于构建高性能、低成本、低功耗、体积小巧且功能专一的嵌入式系统。这些系统无处不在,从微型传感器节点到复杂的工业控制设备,从日常使用...

关键字: 嵌入式开发 Python

嵌入式开发是当今信息技术领域不可或缺的一部分,它融合了硬件设计、软件开发和系统集成等多个学科,专门用于创建那些被嵌入到特定设备或系统中的专用计算机系统。嵌入式开发的主要过程包括利用分立元件或集成器件进行电路设计、结构设计...

关键字: 嵌入式开发 硬件设计 软件开发

嵌入式开发作为一种专业且技术密集型的领域,涵盖了从硬件底层驱动、中间件到应用层软件开发等多个层面的工作,其所需的工具种类繁多,各有针对性,旨在提升开发效率、保证代码质量以及简化调试过程。

关键字: 嵌入式开发 keil

嵌入式开发作为信息技术领域的重要分支,其涉及的语言种类繁多,各具特色。这些语言的选择取决于目标平台的特性、性能需求、开发者的熟练程度以及项目的具体要求。本文将详细介绍几种常见的嵌入式开发语言,包括C语言、C++、汇编语言...

关键字: 嵌入式开发 C语言

嵌入式开发是一项综合了硬件设计、软件编程以及系统整合的技术活动,其目的是为了创造出能够在特定环境中高效、稳定运行的嵌入式系统。这一流程涵盖了多个紧密关联且不可或缺的阶段,从最初的客户需求分析到最终的产品测试和交付,每个环...

关键字: 嵌入式开发 硬件设计

嵌入式开发作为一个融合了计算机软硬件和系统工程的综合性领域,其成功与否往往取决于三个核心要素的有效整合与协调。这三个要素分别是:硬件平台的选择与设计、软件开发及其优化、以及系统级的设计与集成。深入理解并熟练掌握这三个方面...

关键字: 嵌入式开发 ARM

嵌入式开发作为信息技术的关键支柱,在全球数字化转型浪潮中扮演着无可替代的角色。从传统的嵌入式微控制器到如今先进的片上系统(SoC),再到与云计算、人工智能深度融合的智能终端,嵌入式系统的演进与发展始终紧跟时代脉搏。本文将...

关键字: 嵌入式开发 智能应用

嵌入式开发是一种专门针对特定硬件平台设计和实现软件系统的工程实践,它涵盖了从需求分析、系统设计、编程实现、调试测试直到产品部署及维护的全过程。本文将深入探讨嵌入式开发的主要阶段,分解其流程并阐述每个步骤的关键要点,以便于...

关键字: 嵌入式开发 嵌入式软件
关闭
关闭