当前位置:首页 > 嵌入式 > 嵌入式硬件

第三十二章红外遥控实验

本章,我们将向大家介绍如何通过STM32来解码红外遥控器的信号。ALIENTK战舰STM32开发板标配了红外接收头和一个很小巧的红外遥控器。在本章中,我们将利用STM32的输入捕获功能,解码开发板标配的这个红外遥控器的编码信号,并将解码后的键值TFTLCD模块上显示出来。本章分为如下几个部分:

32.1 红外遥控简介

32.2 硬件设计

32.3 软件设计

32.4 下载验证


32.1红外遥控简介

红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点,被诸多电子设备特别是家用电器广泛采用,并越来越多的应用到计算机系统中。

由于红外线遥控不具有像无线电遥控那样穿过障碍物去控制被控对象的能力,所以,在设计红外线遥控器时,不必要像无线电遥控器那样,每套(发射器和接收器)要有不同的遥控频率或编码(否则,就会隔墙控制或干扰邻居的家用电器),所以同类产品的红外线遥控器,可以有相同的遥控频率或编码,而不会出现遥控信号“串门”的情况。这对于大批量生产以及在家用电器上普及红外线遥控提供了极大的方面。由于红外线为不可见光,因此对环境影响很小,再由红外光波动波长远小于无线电波的波长,所以红外线遥控不会影响其他家用电器,也不会影响临近的无线电设备。

红外遥控的编码目前广泛使用的是:NEC Protocol 的PWM(脉冲宽度调制)和Philips

RC-5 Protocol 的PPM(脉冲位置调制)。ALIENTEK战舰STM32开发板配套的遥控器使用的是NEC协议,其特征如下:

1、8位地址和8位指令长度;

2、地址和命令2次传输(确保可靠性)

3、PWM脉冲位置调制,以发射红外载波的占空比代表“0”和“1”;

4、载波频率为38Khz;

5、位时间为1.125ms或2.25ms;

NEC码的位定义:一个脉冲对应560us的连续载波,一个逻辑1传输需要2.25ms(560us脉冲+1680us低电平),一个逻辑0的传输需要1.125ms(560us脉冲+560us低电平)。而遥控接收头在收到脉冲的时候为低电平,在没有脉冲的时候为高电平,这样,我们在接收头端收到的信号为:逻辑1应该是560us低+1680us高,逻辑0应该是560us低+560us高。

NEC遥控指令的数据格式为:同步码头、地址码、地址反码、控制码、控制反码。同步码由一个9ms的低电平和一个4.5ms的高电平组成,地址码、地址反码、控制码、控制反码均是8位数据格式。按照低位在前,高位在后的顺序发送。采用反码是为了增加传输的可靠性(可用于校验)。

我们遥控器的按键2按下时,从红外接收头端收到的波形如图32.1.1所示:



图32.1.1 按键2所对应的红外波形

从图32.1.1中可以看到,其地址码为0,控制码为168。可以看到在100ms之后,我们还收到了几个脉冲,这是NEC码规定的连发码(由9ms低电平+2.5m高电平+0.56ms低电平+97.94ms高电平组成),如果在一帧数据发送完毕之后,按键仍然没有放开,则发射重复码,即连发码,可以通过统计连发码的次数来标记按键按下的长短/次数。

第十五章我们曾经介绍过利用输入捕获来测量高电平的脉宽,本章解码红外遥控信号,刚好可以利用输入捕获的这个功能来实现遥控解码。关于输入捕获的介绍,请参考第十五章的内容。




32.2硬件设计

本实验采用定时器的输入捕获功能实现红外解码,本章实验功能简介:开机在LCD上显示一些信息之后,即进入等待红外触发,如过接收到正确的红外信号,则解码,并在LCD上显示键值和所代表的意义,以及按键次数等信息。同样我们也是用LED0来指示程序正在运行。

所要用到的硬件资源如下:

1)指示灯DS0

2) TFTLCD模块(带触摸屏)

3)红外接收头

4)红外遥控器

前两个,在之前的实例已经介绍过了,遥控器属于外部器件,遥控接收头在板子上,与MCU的连接原理图如32.2.1所示:



图32.2.1 红外遥控接收头与STM32的连接电路图

红外遥控接收头连接在STM32的PB9(TIM4_CH4)上。硬件上不需要变动,只要程序将TIM4_CH4设计为输入捕获,然后将收到的脉冲信号解码就可以了。 开发板配套的红外遥控器外观如图32.2.2所示:

图32.2.2 红外遥控器


32.3软件设计

打开上一章的工程,首先在HARDWARE文件夹下新建一个REMOTE的文件夹。然后新建一个remote.c和remote.h的文件保存在REMOTE文件夹下,并将这个文件夹加入头文件包含路径。

打开remote.c文件,输入如下代码:

#include "remote.h"

#include "delay.h"

#include "usart.h"

//红外遥控初始化

//设置IO以及定时器4的输入捕获

void Remote_Init(void)

{

RCC->APB1ENR|=1<<2; //TIM4时钟使能

RCC->APB2ENR|=1<<3; //使能PORTB时钟

GPIOB->CRH&=0XFFFFFF0F; //PB9输入

GPIOB->CRH|=0X00000080; //上拉输入

GPIOB->ODR|=1<<9; //PB9上拉

TIM4->ARR=10000; //设定计数器自动重装值最大10ms溢出

TIM4->PSC=71; //预分频器,1M的计数频率,1us加1.

TIM4->CCMR2|=1<<8; //CC4S=01 选择输入端IC4映射到TI4上

TIM4->CCMR2|=3<<12; //IC4F=0011配置输入滤波器8个定时器时钟周期滤波

TIM4->CCMR2|=0<<10; //IC4PS=00 配置输入分频,不分频

TIM4->CCER|=0<<13; //CC4P=0 上升沿捕获

TIM4->CCER|=1<<12; //CC4E=1 允许捕获计数器的值到捕获寄存器中

TIM4->DIER|=1<<4; //允许CC4IE捕获中断

TIM4->DIER|=1<<0; //允许更新中断

TIM4->CR1|=0x01; //使能定时器4

MY_NVIC_Init(1,3,TIM4_IRQChannel,2);//抢占1,子优先级3,组2

}

//遥控器接收状态

//[7]:收到了引导码标志

//[6]:得到了一个按键的所有信息

//[5]:保留

//[4]:标记上升沿是否已经被捕获

//[3:0]:溢出计时器

u8 RmtSta=0;

u16 Dval; //下降沿时计数器的值

u32 RmtRec=0; //红外接收到的数据

u8RmtCnt=0; //按键按下的次数

//定时器2中断服务程序

void TIM4_IRQHandler(void)

{

//省略代码

}

//处理红外键盘

//返回值:

// 0,没有任何按键按下

//其他,按下的按键键值.

u8 Remote_Scan(void)

{

u8 sta=0;

u8 t1,t2;

if(RmtSta&(1<<6))//得到一个按键的所有信息了

{

t1=RmtRec>>24; //得到地址码

t2=(RmtRec>>16)&0xff; //得到地址反码

if((t1==(u8)~t2)&&t1==REMOTE_ID)//检验遥控识别码(ID)及地址

{

t1=RmtRec>>8;

t2=RmtRec;

if(t1==(u8)~t2)sta=t1;//键值正确

}

if((sta==0)||((RmtSta&0X80)==0))//按键数据错误/遥控已经没有按下了

{

RmtSta&=~(1<<6);//清除接收到有效按键标识

RmtCnt=0; //清除按键次数计数器

}

}

return sta;

}

该部分代码包含3个函数,首先是Remote_Init函数,该函数用于初始化IO口,并配置TIM4_CH4为输入捕获,并设置其相关参数。TIM4_IRQHandler函数是TIM4的中断服务函数,在该函数里面,实现对红外信号的高电平脉冲的捕获,同时根据我们之前简介的协议内容来解码 ,该函数用到几个全局变量,用于辅助解码,并存储解码结果。最后是Remote_Scan函数,该函用来扫描解码结果,相当于我们的按键扫描,输入捕获解码的红外数据,通过该函数传送给其他程序。

保存remote.c,然后把该文件加入HARDWARE组下。接下来打开remote.h在该文件里面加入如下代码:

//省略代码

这里的REMOTE_ID就是我们开发板配套的遥控器的识别码,对于其他遥控器可能不一样,只要修改这个为你所使用的遥控器的一致就可以了。其他是一些函数的声明,我们保存此部分代码,然后在test.c里面修改主函数如下:

int main(void)

{

//省略部分代码

}

至此,我们的软件设计部分就结束了。

32.4下载验证

在代码编译成功之后,我们通过下载代码到ALIENTEK战舰STM32开发板上,可以看到LCD显示如图32.4.1所示的内容:

图32.4.1 程序运行效果图

此时我们通过遥控器按下不同的按键,则可以看到LCD上显示了不同按键的键值以及按键次数和对应的遥控器上的符号。如图32.4.2所示:

图32.4.2 解码成功



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭