当前位置:首页 > 嵌入式 > 嵌入式硬件

摘 要: 针对成像声纳波束形成器的特点,设计了一种基于FPGA的FFT波束形成器。整个系统采用Altera公司的DSP Builder构建,FFT波束形成器采用基2-512点DIT-FFT算法,并使用流水线技术、乒乓操作。在Altera StratixII FPGA EP2S90F784I4硬件平台上测试,30 MHz系统时钟,在17.07 ?滋s内得到512点FFT运算结果,满足成像声纳系统波束形成器要求。
关键词: FPGA;成像声纳;FFT波束形成;DSP Builder

海洋面积占地球表面积的71%,海底蕴藏的石油、天然气等矿产资源量也远远超过陆地。由于能源危机和资源短缺日益严重,世界各国对海洋的开发利用愈发重视。水声成像技术不仅能够探测海底结构,而且相比于传统视频设备,其优点是呈现的图像几乎不受水文条件的影响,无论在军用还是民用领域,声成像技术都是未来船舶与海洋工程研究的主要技术之一[1]。
对要求实时成像的成像声纳来说,成像速度是衡量其性能优劣的一个非常重要的标准。波束形成器是成像声纳数字系统的重要组成部分,其运算速度影响到整个系统的成像速度,因此提高波束形成运算速度是提升成像声纳成像速度的关键。相移波束形成中的FFT波束形成技术由于具有非常成熟的算法、实现结构和快速的运算速度,成为成像声纳波束形成器首选。
1 FFT波束形成器原理
波束形成技术是指将按一定几何形状排列的多元基阵的各阵元输出,经过处理形成空间指向性的方法,目的是使多阵元构成的基阵经过适当地处理得到在预定方向的指向性[2]。
本文采用等间隔直线阵FFT波束形成。一个N元等间隔直线阵阵元间隔为d,当接收信号为单频或窄带信号时,基阵第i号阵元的输出信号可用复数表示为:

式(2)实际上是离散傅里叶变换的形式,因此计算一个等间隔直线阵各波束输出值就等价于计算各阵元的输出信号xi的离散傅里叶变换,可以利用这一特点对基阵输出信号作快速波束形成处理。
2 FFT波束形成器的DSP Builder实现与验证
2.1 FFT波束形成器的DSP Builder实现
为了让成像声纳达到较高的分辨率,需要对更多的数据进行实时性处理。因此本设计要求在20 ?滋s内得到512点FFT运算结果,并且运算结果误差在1%以内。考虑参数要求,FFT波束形成器设计包括如下三部分:数据预处理部分(加权、聚焦),512点基2 DIT-FFT算法部分及数据整理部分(ABS计算)。总体框架如图1所示。

2.1.1 流水线技术
为了提高数据处理能力,采用流水线设计方法提高系统的工作频率。FFT 模块9级运算单元(State0~State8)并行运行,这样9级数据运算时间仅为1级的运算时间。图2给出了9级处理单元(State0~State8)的DSP Builder实现结构图。

2.1.2 乒乓操作
为了不间断处理数据,本设计采用乒乓操作控制数据流。1 024点RAM划分为PART A(addr:0~511)和PART B(addr:512~1023)两部分。某一时刻T1,向A中写入数据,从B中读取数据;下一时刻T2,向B中写入数据,从A中读取数据,按照上述次序循环写入读取数据。这样,在完成一次512点数据FFT运算后,不需要等待即可开始下一次512点的运算,实现不间断处理数据。
2.2 FFT波束形成器的DSP Builder验证
分析DSP Builder设计的FFT运算模型与理论之间的误差,使用Simulink中函数Repeating Sequence Stair作为激励输入,实部、虚部循环输入数据[0:1:511]。激励如图3所示。用DSP Builder HIL(Hardware In Loop)模块将设计包裹在一套接口中间,编译然后下载至Stratix II FPGA EP2S90F780I4芯片进行测试,得到512点FFT运算结果,如图4所示。分析发现全部运算结果精度保持在1%以内,满足设计要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭