当前位置:首页 > 嵌入式 > 嵌入式硬件

摘 要: 在常规FPGA中设计了基于LUT的异步状态保持单元,实现了全局异步局部同步系统的接口电路、时钟暂停电路,进一步完成四相单轨握手协议。基于Quartus软件的逻辑锁定技术,采用Verilog HDL进行行为描述,构建了无冒险C单元库。在Altera CycloneⅡ EP2C35F672C6器件上,完成了GALS系统的时序仿真,证明了四相单轨握手的正确性。
关键词: 四相单轨握手协议;FPGA;Muller C;GALS;无冒险

异步电路所具有的低功耗、低电磁噪声辐射、高速等突出特点,使其逐渐成为当前设计的焦点。现有异步电路的实现方法往往通过定制的VLSI结构完成,或者设计独特的异步FPGA结构来实现,而现有基于常规FPGA设计的异步电路,往往难于解决其中的冒险、延迟等问题。
全局异步局部同步[1]GALS(Globally Asynchronous Locally Synchronous)系统,结合了同步设计和异步设计的优点,在解决多时钟域问题和模块更新的复用性等方面有巨大优势,其特点是在各同步模块需要处理时才工作,其余时间可以处于暂停状态,不用引入太多异步单元,较易于使用常规FPGA实现,特别是在现有SoC[2]系统中多同步模块异步互联方面有着突出优势,且其具有低功耗、高吞吐量的特点。
参考文献[3]描述的是一种全局异步局部同步的专用FPGA(GAPLA),其内部结构通过同步逻辑模块实现数据计算,在逻辑模块间由同步、异步互换接口完成异步互联,其关键技术是同步、异步互换接口和时钟暂停(Pausible clocking)电路结构,而在常规FPGA中不包含这些结构。参考文献[4]在常规FPGA实现GALS系统,是通过信号状态转换图(STG)的方法设计接口电路,利用Petrify软件实现的一种GALS系统异步封装电路,其将接口模块同步分解成逻辑门电路,容易产生冒险。参考文献[5]则通过使用带复位端的D触发器及延迟单元来完成接口电路的设计,其接口中的延迟单元要求是FPGA内部的标准单元,而在常规FPGA中不包含此标准单元。
本文基于常规FPGA中大量的LUT结构,通过Quartus软件的逻辑锁定[6]技术将设计的C单元锁定在一定区域,保证了C单元的无冒险性,同时建立标准C单元库。使用C单元实现了GALS系统所需要的延迟电路、接口电路、时钟暂停[7]电路。利用状态机设计的计数器作为同步模块,基于四相单轨握手协议[8],完成两同步模块的异步互联。
1 点对点GALS系统
GALS系统从局部来看各同步模块独立设计;从全局来看,各模块彼此时钟独立,以各自工作频率独立运行,其互联通过设计的异步接口完成。且各同步模块时钟具有可暂停性,保证不需要数据处理时时钟不运行的效果,具有低功耗的特点。点对点GALS系统是采用单点同步模块对应单点通信的方式实现的异步电路。整个结构由三部分组成:局部同步区域、握手区域、时钟可暂停区域。在同步区域完成的是同步模块的设计,其同步模块可更新复用;握手区域通过同步、异步互换接口及锁存器完成,由两边同步模块发送的WR、RD信号来触发握手区域进行握手;时钟可暂停区域由内部产生的时钟及握手区域输出的暂停信号(STRETCH)进行时钟的调整,确保系统的低功耗运行。其组成框图如图1所示。

在点对点GALS系统中,设计的重点是接口电路及局部时钟可暂停模块,由于不需要引入外部时钟,所以在全局复位后,时钟可暂停模块就应当产生时钟信号,时钟信号的频率根据各同步模块需求情况设定。在同步模块的设计中,其既要有数据接收模块和数据处理模块,又要产生上级的接收信号(RD)和下级的数据处理完毕信号(WR),以确保电路接连不断地工作。
2 状态保持单元的设计
异步电路中为了避免冒险现象的发生,常需要设计一些适合异步电路的状态保持单元,通常难于设计的就是无冒险的Muller C单元,且其为异步电路的重要组成部分。Muller C标准单元(c_std)的基本功能为:当输入信号A、B同时为“1”时,输出S为“1”;当输入信号A、B同时为“0”时,输出S为“0”;当输入信号A、B处于其他状态时,输出保持原信号。从而当输出信号为“1”时,就能指示输入信号都为“1”。输出为“0”的情况同理。由此可以看出其信号的跳变能够指示或确认其他信号的跳变情况,这样就能够确保电路避免冒险现象的发生。而通过逻辑门设计的C单元,常因内部连线延迟以及门延迟的特性,使得其映射到FPGA内部时会出现冒险现象,因而只有通过建立查找表结构的方式设计C单元,才可使得映射到常规FPGA时避免冒险发生。
在图1的GALS系统中使用到的4种标准的C单元,采用Verilog HDL语言编写,通过编译生成.QSF文件,利用Logic-Lock技术生成网表文件,通过这三个文件即可建立常规FPGA可调用的无冒险C单元库。图2描述的是4种C单元库文件符号及c_std相应的Verilog描述。在C单元库中的c_clr_l单元具有置0功能,而c_clr_h具有置1功能。表1列出4种C单元的lut_mask值。

参考文献[9]使用的是门电路描述的C单元,在EDA软件对其进行综合编译时,容易受到其余同步电路的影响而产生冒险。本文对基于LUT实现的C单元,需要将输出反馈回输入的一端,同时使用Quartus软件的逻辑锁定(Logic-Lock)方式,将C单元综合、布局于一定的区域内,可以避免在与其余电路综合时发生冒险,具有较高实用价值。
3 接口电路及时钟暂停电路的实现
四相单轨握手协议,广泛应用于时序假设中,通常可以使电路获得最好的性能。而在控制电路设计中,最简单的四相单轨握手电路通过一个C门和一个非门组成,即异步电路中常用的Muller流水线[10]。本文采用手工设计方式实现的握手接口电路就是基于Muller流水线的思想,如图3所示。
图3(a)实现的wport接口电路,在全局CLEAR信号为高电平时对全局电路进行复位,其输出REQ、STRETCH信号全为低电平。局部同步模块产生一个WR信号(即同步模块处理完毕)时,通过延迟取反相“与”后输出一个脉冲。当ACK信号为低电平时,左边的C单元输出为“1”,即其暂停信号(STRETCH)置为“1”,停止同步模块时钟运行,此时由于右边的C单元的输入都为“1”,则发出请求信号,完成一次请求;当ACK信号为高电平时,由于右边C单元的置0位为“1”,从而停止请求,实现了一次四相单轨通信。
图3(b)中的rport接口电路,在同步模块发出处理完成信号时,其左边的C单元置1位输入是由RD产生的脉冲信号,从而其输出STRETCH为“1”,即要求同步模块时钟停止,在其请求信号REQ为“1”时,ACK输出为“1”;当REQ为低电位时,由于左边C单元输出为低电位,则ACK输出为“0”,实现了一次四相单轨通信。

结合两接口电路的四相单轨通信则可实现GALS系统的模块互联。对接口电路延迟单元的设计则使用单个标准C单元c_std实现,通过时序约束其延迟量可达到5.125 ns,对整个电路的设计具有较好的延迟效果,且无冒险现象。
在GALS系统中,有些同步模块可能没有自带的时钟信号,常需要系统内部产生特定频率范围的时钟信号,所以可暂停时钟的设计是必须的。实现方法是基于一个C单元及一个延迟单元,以及可随意调节的分频器组成,通过C单元设计的时钟电路可产生频率高的时钟。当CLEAR信号置高时,对电路清0,经过延迟取反后,C单元的输入为1,则输出即为1,以此类推,则产生时钟信号。局部时钟模块的实现如图4所示。通过时序仿真,CLK在未加分频器的情况下可高达500 MHz以上。由于超过目前FPGA的最高时钟,从而其需要通过分频来达到设计要求。此时钟电路根据同步模块需求,频率可进行任意调节,具有较大实用性。


4 GALS系统实现及测试
为了测试由FPGA实现的四相单轨握手协议电路的性能,通过状态机设计无冒险的计数器作为GALS系统两端的同步电路,采用Altera公司CycloneⅡEP2C35F6-
72C6器件作为测试器件,通过逻辑锁定技术将标准C单元模块添加进设计中,通过建立wport、rport的父区域(Parent Region)锁定模块,将子区域(Child Region)锁定的C单元添加进父区域锁定模块,保证了各自时序的独立性,确保了电路功能的实现。其时序仿真结果如图5所示。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式系统开发、调试和测试过程中,J-Link作为一种高效的调试工具,为开发者提供了极大的便利。然而,要想充分发挥J-Link的功能,首先需要正确安装其驱动程序。本文将详细介绍J-Link驱动的安装过程,并深入解析其中...

关键字: jlink 嵌入式系统 嵌入式开发

与谷歌的合作使 Nordic 能够在 nRF Connect SDK 中嵌入开发人员软件,以构建与安卓移动设备兼容的谷歌Find My Device和未知跟踪器警报服务

关键字: 谷歌 SoC 嵌入式开发

嵌入式开发作为当今电子工程和信息技术领域的核心分支,涵盖了广泛的软硬件技术和系统集成方法,用于构建高性能、低成本、低功耗、体积小巧且功能专一的嵌入式系统。这些系统无处不在,从微型传感器节点到复杂的工业控制设备,从日常使用...

关键字: 嵌入式开发 Python

嵌入式开发是当今信息技术领域不可或缺的一部分,它融合了硬件设计、软件开发和系统集成等多个学科,专门用于创建那些被嵌入到特定设备或系统中的专用计算机系统。嵌入式开发的主要过程包括利用分立元件或集成器件进行电路设计、结构设计...

关键字: 嵌入式开发 硬件设计 软件开发

嵌入式开发作为一种专业且技术密集型的领域,涵盖了从硬件底层驱动、中间件到应用层软件开发等多个层面的工作,其所需的工具种类繁多,各有针对性,旨在提升开发效率、保证代码质量以及简化调试过程。

关键字: 嵌入式开发 keil

嵌入式开发作为信息技术领域的重要分支,其涉及的语言种类繁多,各具特色。这些语言的选择取决于目标平台的特性、性能需求、开发者的熟练程度以及项目的具体要求。本文将详细介绍几种常见的嵌入式开发语言,包括C语言、C++、汇编语言...

关键字: 嵌入式开发 C语言

嵌入式开发是一项综合了硬件设计、软件编程以及系统整合的技术活动,其目的是为了创造出能够在特定环境中高效、稳定运行的嵌入式系统。这一流程涵盖了多个紧密关联且不可或缺的阶段,从最初的客户需求分析到最终的产品测试和交付,每个环...

关键字: 嵌入式开发 硬件设计

嵌入式开发作为一个融合了计算机软硬件和系统工程的综合性领域,其成功与否往往取决于三个核心要素的有效整合与协调。这三个要素分别是:硬件平台的选择与设计、软件开发及其优化、以及系统级的设计与集成。深入理解并熟练掌握这三个方面...

关键字: 嵌入式开发 ARM

嵌入式开发作为信息技术的关键支柱,在全球数字化转型浪潮中扮演着无可替代的角色。从传统的嵌入式微控制器到如今先进的片上系统(SoC),再到与云计算、人工智能深度融合的智能终端,嵌入式系统的演进与发展始终紧跟时代脉搏。本文将...

关键字: 嵌入式开发 智能应用

嵌入式开发是一种专门针对特定硬件平台设计和实现软件系统的工程实践,它涵盖了从需求分析、系统设计、编程实现、调试测试直到产品部署及维护的全过程。本文将深入探讨嵌入式开发的主要阶段,分解其流程并阐述每个步骤的关键要点,以便于...

关键字: 嵌入式开发 嵌入式软件
关闭
关闭