当前位置:首页 > 嵌入式 > 嵌入式硬件

0前言

液晶显示屏(LCD)是薄型平面显示设备,由排列在光源或者反射器之前一定数量的彩色或者单色象素构成。这类显示屏已经成为大部分嵌入式系统不可缺少的组成部分。但是在嵌入式系统中八位和十六位微处理器大多没有内置的LCD控制器,又由于LCD屏的分辨率很高,即使有内置的LCD控制器,也较难进行控制;另外内置LCD控制器对内存带宽的占用较高,使控制器所能支配的资源也会变得非常有限。因此在微处理器和LCD屏之间加上一个LCD控制器是非常必要的。常用的LCD控制器主要有两种:专用的控制芯片和基于可编程器件的控制器。本文采用Altera公司的MAX II系列CPLD器件来实现LCD控制器。CPLD一般使用外加的串行EEPROM来存储非易失信息,而MAX II CPLD是唯一具有用户闪存(UFM)的CPLD,它支持用户存储高达8Kbits的非易失信息,因此不需要采用外部存储器,并且在实现LCD控制器时还可以利用CPLD的内部UFM振荡器来满足时钟需求,从而避免了采用外部时钟信号。这些独特的功能使MAX II CPLD成为实现LCD控制器最好的目标器件。

1 嵌入式系统的LCD接口电路结构

基于MAX II CPLD的LCD接口电路一般采用图1所示结构。图中LCD接口电路负责接受微处理器的配置,通过总线把DRAM上保存的显示数据读出,然后按照屏类型和显示设置转换为需要的格式,并按照屏时序要求发送出去。在设计显示控制器时,需要注意如下几个方面:支持的屏类型、总线类型的选择、同微处理器之间的交互方式、动态图像显示和中断设计。基于CPLD的LCD控制器可以提供合适的显示单元,它产生需要的时序信号,满足LCD的时序要求,同时卸载了微处理器和控制器繁重的LCD处理任务,从而提高了处理器和控制器执行其他操作的效率。

2 LCD 控制器组成与接口信号

2.1 LCD 控制器组成

由图1可知,LCD控制器有三个主要模块:有限状态机(FSM)、时钟分频器和用户闪存(UFM)模块。

1、初始化LCD和有限状态机模块

FSM模块有8个不同的状态。它用于初始化LCD,初始化完成后显LCD进行读写操作。图2所示为LCD模块的初始化步骤。为简化初始化过程,每次发送一条命令后,延时15ms(而不是检查忙标志的状态)。但是向LCD模块写入数据时,每一数据写操作之后,要检查忙标志的状态。这样就加速了写操作过程。

2、时钟分频器模块

时钟分频器模块主要是降低内部振荡器输出频率,从而满足了LCD模块的时序要求以及控制器的性能要求。该模块把振荡器输出信号osc的频率由.5MHz降低到43kHz左右。降低频率以后的信号(即Clk信号)从时钟分频器模块输出(见图3)。该模块主要代码为:
module divider (osc, clk);
input osc;
output clk;
reg clk;
reg [6:0]count;
initial
begin
count = 7"b0000000;
end
always @ (posedge(osc))
begin
count = count + 7"b0000001;
clk = count[6];
end
endmodule

3、用户闪存模块

MAX II CPLD中的用户闪存UFM模块主要用于存储LCD控制器打开之后,需要在LCD屏上显示的信息。采用十六进制(Intel格式)文件(.hex)对UFM进行设置,并利用UFM宏功能进行例化。

UFM模块接口信号主要有addr、nread、do、dv、osc和clk信号:

Addr为9位地址总线,用于选择UFM的某一存储位置。
nread 若该信号设置为0,以读取地址总线所指向存储器的内容。
do 为数据输出信号。8位数据总线,保持地址总线所指向16位存储器的高8位。
dv 为数据有效信号。该信号指示8位数据总线上的数据有效并且可读。
osc 为UFM模块内部振荡器输出。输出信号到时钟分频器,输出频率为5.5MHz。

2.2 LCD 控制器接口信号

1、LCD控制器与LCD屏之间的接口信号

LCD控制器与LCD模块之间的接口信号有E、RS、RW 、DB0-DB7:

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭