当前位置:首页 > 嵌入式 > 嵌入式硬件

摘 要: 基于自适应色度分割方法,采用专用集成电路(ASIC)完成深度图像的处理及优化。系统级仿真验证结果表明,该深度图像处理方法具有实时性、兼容性、实用性等特点,适用于实时自由视点3D视频的处理。
关键词: 专用集成电路设计;自由视点视频;深度图像;色度图像分割;运动-视差联合预测

自由视点视频FVV(Free Viewpoint Video)技术是自由视点3D视频处理领域中最有前景的一种技术[1-4]。自由视点视频处理技术的基本方法是基于深度图像来估计和重建多视点视频,从而显著减少数据带宽。所以深度图像的估计和处理方法是自由视点视频技术的关键和重点。
深度图像可以直接由基于运动-视差联合估计的方法计算,利用这种方法能够有效减少自由视点视频技术中深度图像处理过程所需的数据带宽,并且没有增加额外的硬件资源和计算时间成本。但是这种方法是在一个特定的搜索窗口内用特定的代价函数来进行块搜索,所以它存在一些问题:在物体的边缘存在着块效应;在连续的大背景区域、复杂背景区域存在预测噪声。基于色度分割的方法可以改进这些错误。
1 色度分割原理
原始的YUV图像是由亮度分量和色度分量组成的。在一般的运动-视差联合估计的方法中,只有亮度信息被用到,以求得视差矢量和深度图像,包含有丰富的物体边界信息的色度分量没有被用到。对于连续物体表面或者背景区域,色度分量值几乎是相同的。所以如果色度图像按照特定的标准被分割,物体的表面或者背景区域就能被相应地检测出来。如果深度图像的像素值在同一个分割内各不相同,则在这个区域肯定存在深度预测错误。通过检测到错误像素的位置,采取相应的措施来纠正这些错误。
色度分割方法的三个步骤[5]:
第一步:将U/V分量归一化到[0,255]之间。
第二步:进行图像分割,如果当前像素值与其相邻的顶部或者左侧像素值绝对值小于DIV_TH,则它被划分到相同的分割,否则分离到下一个新的分割,如式(1)所示:


2 深度图像处理模块设计方案
2.1 总体设计
2.1.1 深度处理模块的架构与组成设计
根据算法结构与组成,确定深度模块的实现架构与组成,包括总线结构、存储结构、时钟频率、模块组成等。
总线结构选用标准AXI总线。由于立体视频需要实时处理多路视频信号,所以需要的视频数据处理带宽极大,必须采用AXI总线设计才能满足实时处理要求。内部模块所产生的处理数据,如果不能暂存于片上存储单元中,则通过AXI总线写到片外缓存。同样,读数据也通过AXI总线读入处理模块。存储结构根据视频像素YUV分量的组成,分为Interleave存储方式和非Interleave存储方式。Interleave存储可以实现具有较长Burst传输的DMA设计,但是内部芯片设计较为复杂。而非Interleave存储则不利于实现高效的总线传输,但是DMA设计相对简单。根据所用的标准单元库,以及芯片实际电路设计来确定所需的时钟频率,根据经验应不低于200 MHz。
2.1.2 运动估计与视差估计存储单元设计
由于需要对当前块同时进行运动预测与视差预测,所以宏块中间预测结果需要尽可能存储于片上存储单元中,以减少总线的输入输出数据带宽。假设视差估计的搜索窗口为PW×PH,图像分辨率为FW×FH,运动预测采用固定搜索窗口范围48×48。视差预测模块与运动预测模块同时读入相应参考宏块存入片上缓存,片上存储单元需要将进行完预测、并且后续预测有可能会用到的宏块都存储下来以减少数据带宽,增加处理速度。这样,运动估计存储单元MEM(ME Memory)至少需要有16×3+4个像素行的容量,即FW×52。相应视差存储单元DEM(DE Memory)至少需要有FW×PH+4容量。
2.1.3 芯片软硬件验证平台设计
芯片设计离不开验证平台。大规模集成电路设计过程需要完善的验证平台进行仿真、测试来证明其功能和性能的正确性、完整性、实时性。立体视频编码芯片基于传统的Verilog和C语言来搭建软硬件验证平台,如图1所示。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭